一道数学几何题,求详细过程。 200
如图,△DEF是正三角形,且AD=BE=CF,那么△ABC是正三角形吗?如果是,请予以证明;如果不是,请说明理由。...
如图,△DEF是正三角形,且AD=BE=CF,那么△ABC是正三角形吗?如果是,请予以证明;如果不是,请说明理由。
展开
11个回答
展开全部
证明:假设△ABC不等边,不妨设∠A>60°>∠B
那么有:
∠AED=180°-∠A-∠ADE
=180°-∠A-(120°-∠BDF)
=60°-∠A+∠BDF
因为60°<∠A,所以∠BDF>∠AED
∠ADE=120°-∠BDF
=120°-(180°-∠B-∠BFD)
=∠B-60°+∠BFD
因为∠B<60°,所以∠BFD>∠ADE
根据正弦定理:
BF/DF=sin∠BDF/sinB;
AD/DE=sin∠AED/sinA;
∵BF=AD,DF=DE,
∴sin∠BDF/sinB=sin∠AED/sinA
∵∠A>∠B,DE=DF
∴sin∠AED>sin∠BDF,而∠BDF>∠AED,
所以∠BDF>∠AED>90°,且∠ADE<∠BFD<30°
根据余弦定理:则有BD>AE
设DE=DF=FE=a,AD=BF=CE=b,因为∠BDF>∠AED>90°,所以钝角边大于锐角边
即AD>DE,BD>DF,b>a,
因为∠BDF>∠AED>90°,所以cos∠BDF<cos∠AED根据余弦定理
cos∠BDF=(BD²+a²-b²)/2aBD=BD/2a+(a²-b²)/2aBD
cos∠AED=(AE²+a²-b²)/2aAE=AE/2a+(a²-b²)/2aAE
即BD/2a+(a²-b²)/2aBD<AE/2a+(a²-b²)/2aAE
即BD-AE<(a²-b²)(1/AE-1/BD)=(a²-b²)(BD-AE)/(AE×BD)
由于BD>AE,
因此(a²-b²)/(AE×BD)>1
可是b>a,a²-b²<0,AE×BD>0,所以显然不成立
所以假设不成立
△ABC是正三角形。
那么有:
∠AED=180°-∠A-∠ADE
=180°-∠A-(120°-∠BDF)
=60°-∠A+∠BDF
因为60°<∠A,所以∠BDF>∠AED
∠ADE=120°-∠BDF
=120°-(180°-∠B-∠BFD)
=∠B-60°+∠BFD
因为∠B<60°,所以∠BFD>∠ADE
根据正弦定理:
BF/DF=sin∠BDF/sinB;
AD/DE=sin∠AED/sinA;
∵BF=AD,DF=DE,
∴sin∠BDF/sinB=sin∠AED/sinA
∵∠A>∠B,DE=DF
∴sin∠AED>sin∠BDF,而∠BDF>∠AED,
所以∠BDF>∠AED>90°,且∠ADE<∠BFD<30°
根据余弦定理:则有BD>AE
设DE=DF=FE=a,AD=BF=CE=b,因为∠BDF>∠AED>90°,所以钝角边大于锐角边
即AD>DE,BD>DF,b>a,
因为∠BDF>∠AED>90°,所以cos∠BDF<cos∠AED根据余弦定理
cos∠BDF=(BD²+a²-b²)/2aBD=BD/2a+(a²-b²)/2aBD
cos∠AED=(AE²+a²-b²)/2aAE=AE/2a+(a²-b²)/2aAE
即BD/2a+(a²-b²)/2aBD<AE/2a+(a²-b²)/2aAE
即BD-AE<(a²-b²)(1/AE-1/BD)=(a²-b²)(BD-AE)/(AE×BD)
由于BD>AE,
因此(a²-b²)/(AE×BD)>1
可是b>a,a²-b²<0,AE×BD>0,所以显然不成立
所以假设不成立
△ABC是正三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是
△ADF全等△EFC全等△DBE(SAS)
得出:DF=EF=DB
(注:不能直接写三个三角形全等。只能两个两个的证)
0 0
求采纳。。
△ADF全等△EFC全等△DBE(SAS)
得出:DF=EF=DB
(注:不能直接写三个三角形全等。只能两个两个的证)
0 0
求采纳。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
△DEF是正三角形
ab=bc=ca
a=b=c=60度
AD=BE=CF
af=ce=bd
再证明三个全等
de=ef=fd
即等边三角形
ab=bc=ca
a=b=c=60度
AD=BE=CF
af=ce=bd
再证明三个全等
de=ef=fd
即等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是。因为由AB=BC=AC,又因为AD=BE=FC,角A=角B=角C,从而证明三角形ADF=EFC=BDE(全等),所以DE=EF=DF,故三角形DEF为正三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是正三角形,但是证明条件不齐。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询