一道数学几何题,求详细过程,谢谢!
如图所示,△DEF是正三角形,且AD=BE=CF,试判断△ABC是正三角形吗?若是,请予以证明;若不是,请说明理由。...
如图所示,△DEF是正三角形,且AD=BE=CF,试判断△ABC是正三角形吗?若是,请予以证明;若不是,请说明理由。
展开
9个回答
展开全部
三角形ABC是正三角形
用反证明法证
证明:假如三角形ABC不是正三角形,是等腰三角形,AB=AC
因为AD=CF
AB=BD+AD
AC=AF+CF
所以BD=AF
因为三角形DEF是正三角形
所以DE=DF
因为BE=AD
所以三角形ADF和三角形BED全等(SSS)
所以角B=角A
所以BC=AC
所以AB=BC=AC
所以三角形ABC是正三角形这与假设的条件矛盾
所以假设不成立
所以三角形ABC是正三角形
用反证明法证
证明:假如三角形ABC不是正三角形,是等腰三角形,AB=AC
因为AD=CF
AB=BD+AD
AC=AF+CF
所以BD=AF
因为三角形DEF是正三角形
所以DE=DF
因为BE=AD
所以三角形ADF和三角形BED全等(SSS)
所以角B=角A
所以BC=AC
所以AB=BC=AC
所以三角形ABC是正三角形这与假设的条件矛盾
所以假设不成立
所以三角形ABC是正三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设∠A∠B∠C中∠A最大
∴BC>AB和AC
∵AD=BE=CF
∴CE>BD和AF
∴∠CFE>∠BED和∠ADF
∵当两边固定长时,它的夹角增加时,对应三角形的另外两个角随着减少
∴∠C<∠B和∠A
∵∠A∠B∠C中∠A最大
∴∠AFD>∠CEF和∠BDE
∵∠AFD+60°=∠C+∠CEF
∴∠C>60°
∵∠C是△ABC中最小的角
∴∠C不可能大于60°
∴三个角只能都等于60°
∴BC>AB和AC
∵AD=BE=CF
∴CE>BD和AF
∴∠CFE>∠BED和∠ADF
∵当两边固定长时,它的夹角增加时,对应三角形的另外两个角随着减少
∴∠C<∠B和∠A
∵∠A∠B∠C中∠A最大
∴∠AFD>∠CEF和∠BDE
∵∠AFD+60°=∠C+∠CEF
∴∠C>60°
∵∠C是△ABC中最小的角
∴∠C不可能大于60°
∴三个角只能都等于60°
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:假设△ABC不等边,不妨设∠A>60°>∠B
那么有:
∠AED=180°-∠A-∠ADE
=180°-∠A-(120°-∠BDF)
=60°-∠A+∠BDF
因为60°<∠A,所以∠BDF>∠AED
∠ADE=120°-∠BDF
=120°-(180°-∠B-∠BFD)
=∠B-60°+∠BFD
因为∠B<60°,所以∠BFD>∠ADE
根据正弦定理:
BF/DF=sin∠BDF/sinB;
AD/DE=sin∠AED/sinA;
∵BF=AD,DF=DE,
∴sin∠BDF/sinB=sin∠AED/sinA
∵∠A>∠B,DE=DF
∴sin∠AED>sin∠BDF,而∠BDF>∠AED,
所以∠BDF>∠AED>90°,且∠ADE<∠BFD<30°
根据余弦定理:则有BD>AE
设DE=DF=FE=a,AD=BF=CE=b,因为∠BDF>∠AED>90°,所以钝角边大于锐角边
即AD>DE,BD>DF,b>a,
因为∠BDF>∠AED>90°,所以cos∠BDF<cos∠AED根据余弦定理
cos∠BDF=(BD²+a²-b²)/2aBD=BD/2a+(a²-b²)/2aBD
cos∠AED=(AE²+a²-b²)/2aAE=AE/2a+(a²-b²)/2aAE
即BD/2a+(a²-b²)/2aBD<AE/2a+(a²-b²)/2aAE
即BD-AE<(a²-b²)(1/AE-1/BD)=(a²-b²)(BD-AE)/(AE×BD)
由于BD>AE,
因此(a²-b²)/(AE×BD)>1
可是b>a,a²-b²<0,AE×BD>0,所以显然不成立
所以假设不成立
△ABC是正三角形。
那么有:
∠AED=180°-∠A-∠ADE
=180°-∠A-(120°-∠BDF)
=60°-∠A+∠BDF
因为60°<∠A,所以∠BDF>∠AED
∠ADE=120°-∠BDF
=120°-(180°-∠B-∠BFD)
=∠B-60°+∠BFD
因为∠B<60°,所以∠BFD>∠ADE
根据正弦定理:
BF/DF=sin∠BDF/sinB;
AD/DE=sin∠AED/sinA;
∵BF=AD,DF=DE,
∴sin∠BDF/sinB=sin∠AED/sinA
∵∠A>∠B,DE=DF
∴sin∠AED>sin∠BDF,而∠BDF>∠AED,
所以∠BDF>∠AED>90°,且∠ADE<∠BFD<30°
根据余弦定理:则有BD>AE
设DE=DF=FE=a,AD=BF=CE=b,因为∠BDF>∠AED>90°,所以钝角边大于锐角边
即AD>DE,BD>DF,b>a,
因为∠BDF>∠AED>90°,所以cos∠BDF<cos∠AED根据余弦定理
cos∠BDF=(BD²+a²-b²)/2aBD=BD/2a+(a²-b²)/2aBD
cos∠AED=(AE²+a²-b²)/2aAE=AE/2a+(a²-b²)/2aAE
即BD/2a+(a²-b²)/2aBD<AE/2a+(a²-b²)/2aAE
即BD-AE<(a²-b²)(1/AE-1/BD)=(a²-b²)(BD-AE)/(AE×BD)
由于BD>AE,
因此(a²-b²)/(AE×BD)>1
可是b>a,a²-b²<0,AE×BD>0,所以显然不成立
所以假设不成立
△ABC是正三角形。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵△ABC为等边三角形,且AD=BE=CF,
∴AE=BF=CD,
又∵∠A=∠B=∠C=60°,
∴△ADE≌△BEF≌△CFD(SAS),
∴DF=ED=EF,
∴△DEF是等边三角形.
∴AE=BF=CD,
又∵∠A=∠B=∠C=60°,
∴△ADE≌△BEF≌△CFD(SAS),
∴DF=ED=EF,
∴△DEF是等边三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询