已知向量a=(cosx,sinx) 向量b=(sinx,cosx) 且x 属于[0,π/2]
求(1)向量a点乘向量的取值范围(2)求证|向量a+向量b|=2sin(x+π/4)(3)求函数f(x)=向量a点乘向量b-根号2|向量a+向量b|的取值范围...
求(1)向量a点乘向量的取值范围(2)求证|向量a+向量b|=2sin(x+π/4)(3)求函数f(x)=向量a点乘向量b-根号2|向量a+向量b|的取值范围
展开
4个回答
展开全部
解:(1) a*b=cosx*sinx+sinx*cosx
=2sinx*cox
=sin2x
∵ x∈[0,π/2]
∴2x∈[0,π]
∴0≤sin2x≤1
因此,a*b的取值范围为[0,1]
(2)证明:∵|a+b|=|(cosx,sinx)+(sinx,cosx)|
=|(cosx+sinx,cosx+sinx)|
=√2|cosx+sinx|
=√2|√2sin(x+π/4)|
=2|sin(x+π/4)|
又 x∈[0,π/2]
∴ π/4≤x+π/4≤3π/4
∴ sin(x+π/4)>0
∴ |a+b|=2sin(x+π/4)
(3) 由(1)(2),可知
f(x)=a*b-√2|a+b|
=2sinx*cosx-√2×2sin(x+π/4)
=2sinx*cosx-2√2sin(x+π/4)
=(sinx+cosx)²-(sin²x+cos²x2)-2√2sin(x+π/4)
=[√2sin(x+π/4)]²-2√2sin(x+π/4)-1
=2sin²(x+π/4)-2√2sin(x+π/4)-1
=2[sin(x+π/4)-(√2/2)]²-2
函数f(x)可看成是自变量为sin(x+π/4)的二次函数,对称轴为√2/2,
且自变量在sin(x+π/4)>√2/2上为增函数
由(2),知 π/4≤x+π/4≤3π/4
则 √2/2≤sin(x+π/4)≤1
所以,当自变量sin(x+π/4)=√2/2时,函数f(x)有最小值-2
当自变量sin(x+π/4)=1时,函数f(x)有最大值1-√2
因此,f(x)的取值范围为[-2,1-√2]
=2sinx*cox
=sin2x
∵ x∈[0,π/2]
∴2x∈[0,π]
∴0≤sin2x≤1
因此,a*b的取值范围为[0,1]
(2)证明:∵|a+b|=|(cosx,sinx)+(sinx,cosx)|
=|(cosx+sinx,cosx+sinx)|
=√2|cosx+sinx|
=√2|√2sin(x+π/4)|
=2|sin(x+π/4)|
又 x∈[0,π/2]
∴ π/4≤x+π/4≤3π/4
∴ sin(x+π/4)>0
∴ |a+b|=2sin(x+π/4)
(3) 由(1)(2),可知
f(x)=a*b-√2|a+b|
=2sinx*cosx-√2×2sin(x+π/4)
=2sinx*cosx-2√2sin(x+π/4)
=(sinx+cosx)²-(sin²x+cos²x2)-2√2sin(x+π/4)
=[√2sin(x+π/4)]²-2√2sin(x+π/4)-1
=2sin²(x+π/4)-2√2sin(x+π/4)-1
=2[sin(x+π/4)-(√2/2)]²-2
函数f(x)可看成是自变量为sin(x+π/4)的二次函数,对称轴为√2/2,
且自变量在sin(x+π/4)>√2/2上为增函数
由(2),知 π/4≤x+π/4≤3π/4
则 √2/2≤sin(x+π/4)≤1
所以,当自变量sin(x+π/4)=√2/2时,函数f(x)有最小值-2
当自变量sin(x+π/4)=1时,函数f(x)有最大值1-√2
因此,f(x)的取值范围为[-2,1-√2]
展开全部
解:(1)a·b=(cosx,sinx)(sinx,cosx)=cosxsinx+sinxcosx=2sinxcosx=sin2x
∵ x ∈[0,π/2]
∴2x ∈[0,π]即sin2x∈[0,1]
∴a·b∈[0,1]
(2)a+b=(cosx,sinx)+(sinx,cosx)=(cosx+sinx,sinx+cosx)
sinx+cosx=√2sin(x+π/4)
∴Ia+bI=√【(√2sin(x+π/4))^2+(√2sin(x+π/4))^2】
=√(4(sin(x+π/4))^2)
=2sin(x+π/4)
(3)f(x)=sin2x-2√2sin(x+π/4)
=2sinxcosx-√2sinx-√2cosx
sorry,第三题我无能为力!
∵ x ∈[0,π/2]
∴2x ∈[0,π]即sin2x∈[0,1]
∴a·b∈[0,1]
(2)a+b=(cosx,sinx)+(sinx,cosx)=(cosx+sinx,sinx+cosx)
sinx+cosx=√2sin(x+π/4)
∴Ia+bI=√【(√2sin(x+π/4))^2+(√2sin(x+π/4))^2】
=√(4(sin(x+π/4))^2)
=2sin(x+π/4)
(3)f(x)=sin2x-2√2sin(x+π/4)
=2sinxcosx-√2sinx-√2cosx
sorry,第三题我无能为力!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)向量a点乘向量b的取值范围?
a·b=sinxcosx+sinxcosx
=sin2x
0≤a·b≤1
(2)求证|向量a+向量b|=2sin(x+π/4)
π/4≤x+π/4≤3π/4
a+b=(sinx+cosx,sinx+cosx)
|a+b|=√2 |sinx+cosx|
=√2*√2*|sin(x+π/4)|
=2|sin(x+π/4)|
=2sin(x+π/4)
(3)求函数f(x)=向量a点乘向量b-根号2|向量a+向量b|的取值范围
-2≤f(x)≤1-2√2
a·b=sinxcosx+sinxcosx
=sin2x
0≤a·b≤1
(2)求证|向量a+向量b|=2sin(x+π/4)
π/4≤x+π/4≤3π/4
a+b=(sinx+cosx,sinx+cosx)
|a+b|=√2 |sinx+cosx|
=√2*√2*|sin(x+π/4)|
=2|sin(x+π/4)|
=2sin(x+π/4)
(3)求函数f(x)=向量a点乘向量b-根号2|向量a+向量b|的取值范围
-2≤f(x)≤1-2√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)cosxsinx+sinxcosx=sin2x 范围是[0,1]
(2)|a+b|=sqr(1+1+2sin2x) =sqr[2(sinx+cosx)^2]=sqr(2)*(sinx+cosx) = 2sin(x+π/4)
sqr代表根号
(3) f(x)=2sinxcosx-2sinx-2cosx
令sinx+cosx=t, 则2sinxcosx=t^2-1 t属于[1,sqr(2)]
f(x)=t^2-2t-1=(t-1)^2-2 值域[-2,1-2*sqr(2)]
(2)|a+b|=sqr(1+1+2sin2x) =sqr[2(sinx+cosx)^2]=sqr(2)*(sinx+cosx) = 2sin(x+π/4)
sqr代表根号
(3) f(x)=2sinxcosx-2sinx-2cosx
令sinx+cosx=t, 则2sinxcosx=t^2-1 t属于[1,sqr(2)]
f(x)=t^2-2t-1=(t-1)^2-2 值域[-2,1-2*sqr(2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |