已知直线2ax-by+2=0(a>0,b>0)始终平分圆x^2+y^2+2x-4y+1=0的周长,求ab的最大值 只是解析看不懂
解析(x+1)^2+(y-2)^2=4平方则是直径过圆心(-1,2)所以-2a-2b+2=0a>0,b>01=a+b≥2√ab√ab≤1/2ab≤1/4所以最大值=1/4...
解析 (x+1)^2+(y-2)^2=4
平方则是直径
过圆心(-1,2)
所以-2a-2b+2=0
a>0,b>0
1=a+b≥2√ab
√ab≤1/2
ab≤1/4
所以最大值=1/4 过圆心(-1,2) 为什么?
平方则是直径 为什么? 展开
平方则是直径
过圆心(-1,2)
所以-2a-2b+2=0
a>0,b>0
1=a+b≥2√ab
√ab≤1/2
ab≤1/4
所以最大值=1/4 过圆心(-1,2) 为什么?
平方则是直径 为什么? 展开
3个回答
展开全部
x² + y² + 2x - 4y + 1 =0
x² + 2x + 1 + y² -4y + 4 = 4
(x+1)² + (y-2)² = 2²
这是圆心为C(-1, 2), 半径为2的圆的标准方程(设圆上任何一点的坐标为P(x, y), 圆心为C(-1, 2), 半径为2, 则PC² = 4 = (x+1)² + (y-2)²)
直线2ax-by+2=0始终平分圆, 则该直线一直过圆心C:
-2a -2b + 2 = 0
其余的解释很清楚,这里不再重复。
x² + 2x + 1 + y² -4y + 4 = 4
(x+1)² + (y-2)² = 2²
这是圆心为C(-1, 2), 半径为2的圆的标准方程(设圆上任何一点的坐标为P(x, y), 圆心为C(-1, 2), 半径为2, 则PC² = 4 = (x+1)² + (y-2)²)
直线2ax-by+2=0始终平分圆, 则该直线一直过圆心C:
-2a -2b + 2 = 0
其余的解释很清楚,这里不再重复。
展开全部
直线是肯定过圆心的,因为只有过圆心的直线才是直径,而只有直径才可以平分园的周长和面积,我记得初三几何应该有这定理的
平方则是直径不知是啥意思,不过影响不大,知道直线过圆心就可以解题啦~~
平方则是直径不知是啥意思,不过影响不大,知道直线过圆心就可以解题啦~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询