求函数当x趋向于0时的极限?
1个回答
展开全部
当x趋向于0时,分母x趋于0,分子中的指数1/x趋于无穷大,因此这是一个“0/无穷大”的不定式。可以使用洛必达法则求解:
将函数化简为f(x) = e^(1/x) / x
f(x) = e^(1/x) / x
f'(x) = (-e^(1/x) / x^2) - (e^(1/x) / x^2)
令x趋向于0,得到f'(x) = -1,因此原式的极限为:
lim(x->0) e^(1/x) / x = lim(x->0) [1/f(x)] = lim(x->0) (-x/e^(1/x)) = 0
所以(e^(1/x))/x当x趋向于0时的极限为0。
将函数化简为f(x) = e^(1/x) / x
f(x) = e^(1/x) / x
f'(x) = (-e^(1/x) / x^2) - (e^(1/x) / x^2)
令x趋向于0,得到f'(x) = -1,因此原式的极限为:
lim(x->0) e^(1/x) / x = lim(x->0) [1/f(x)] = lim(x->0) (-x/e^(1/x)) = 0
所以(e^(1/x))/x当x趋向于0时的极限为0。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询