如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF. 求证:(1)DE=DF (2)△DEF是等腰直角三角形
2个回答
展开全部
分析:因为∠BAC=90°,AB=AC,D是BC的中点,AE=BF,连接AD,可证明△DAE≌△DBF,则有DE=DF,再用角与角之间的关系求得∠DEF是直角,即可判断△DEF为等腰直角三角形
解:连接AD,
∵Rt△ABC中,∠BAC=90°,AB=AC,
∴∠B=∠C=45°.
∵AB=AC,DB=CD,
∴∠DAE=∠BAD=45°.
∴∠BAD=∠B=45°.
∴AD=BD,∠ADB=90°.
∵AE=BF,∠DAE=∠B=45°,AD=BD,
∴△DAE≌△DBF(SAS).
∴DE=DF,∠ADE=∠BDF.
∵∠BDF+∠ADF=∠ADB=90°,
∴∠ADE+∠ADF=90°.
∴△DEF为等腰直角三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询