已知α,β,γ为锐角,sin²α+sin²β+sin²γ=1.求证π/2<α+β+γ<3π/4
1个回答
展开全部
sin²α+sin²β+sin²γ=1,
∴2sin²γ=2-2sin^α-2sin²β
=cos2α+cos2β
=2cos(α+β)cos(α-β),①
α,β,γ是锐角,
∴0<=|α-β|<α+β<π,
∴cos(α-β)>cos(α+β),
由①,cos|α-β|>sinγ=cos(π/2-γ)>cos(α+β)>0,
∴|α-β|<π/2-γ<α+β<π/2,
∴α+β+γ>π/2;
由α+β<π/2轮换得
β+γ<π/2,
γ+α<π/2,
上述三式相加,除以2,得α+β+γ<3π/4.
∴2sin²γ=2-2sin^α-2sin²β
=cos2α+cos2β
=2cos(α+β)cos(α-β),①
α,β,γ是锐角,
∴0<=|α-β|<α+β<π,
∴cos(α-β)>cos(α+β),
由①,cos|α-β|>sinγ=cos(π/2-γ)>cos(α+β)>0,
∴|α-β|<π/2-γ<α+β<π/2,
∴α+β+γ>π/2;
由α+β<π/2轮换得
β+γ<π/2,
γ+α<π/2,
上述三式相加,除以2,得α+β+γ<3π/4.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询