已知函数f(x)=[2sin(x=π/3)+sinx]cosx-√3sin²x,x∈R.
已知函数f(x)=[2sin(x=π/3)+sinx]cosx-√3sin²x,x∈R.若存在x∈[0,5π/12],使不等式f(x)<m成立,求实数m的取值范...
已知函数f(x)=[2sin(x=π/3)+sinx]cosx-√3sin²x,x∈R.若存在x∈[0,5π/12],使不等式f(x)<m成立,求实数m的取值范围
展开
1个回答
展开全部
f(x)=[2sin(x+π/3)+sinx]cosx-√3sin²x
=[2sinxcosπ/3+2cos2xsinπ/3+sinx]cosx-√3sin²x
=2sinxcosx+√3(cos²x-sin²x)
=sin2x+√3cos2x
=2(1/2*sin2x+√3/2*cos2x)
=2sin(2x+π/3)
∵存在x∈[0,5π/12],使不等式f(x)<m成立
∴需f(x)min<m
∵x∈[0,5π/12] ∴2x+π/3∈[π/3,7π/6]
∴2x+π/3=7π/6时,f(x)取得最小值-1
∴m>-1
=[2sinxcosπ/3+2cos2xsinπ/3+sinx]cosx-√3sin²x
=2sinxcosx+√3(cos²x-sin²x)
=sin2x+√3cos2x
=2(1/2*sin2x+√3/2*cos2x)
=2sin(2x+π/3)
∵存在x∈[0,5π/12],使不等式f(x)<m成立
∴需f(x)min<m
∵x∈[0,5π/12] ∴2x+π/3∈[π/3,7π/6]
∴2x+π/3=7π/6时,f(x)取得最小值-1
∴m>-1
更多追问追答
追问
使不等式f(x)<m成立是需要f(x)max<m
追答
f(x)<m
f(x)总小于m,就需要f(x)的最大值<m
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询