已知函数f(x)=f′(1)e^x-1-f(0)x+1/2x^2,(1)求f(x)的解析式及单调区间。
2个回答
展开全部
1、
f(x)=f′(1)e^(x-1)-f(0)x+1/2x^2中,令x=0的f'(1)=ef(0)
所以f(x)=f(0)e^x-f(0)x+1/2x^2
关于x求导得:f'(x)=f(0)e^x-f(0)+x
故f'(1)=f(0)e-f(0)+1=ef(0)解得f(0)=1
所以f(x)=e^x - x + 1/2 x^2
f'(x)=e^x-1+x
当x>0时,f'(x)>0,函数单调增加
当x<=0时,f'(x)<=0,函数单调减少。
所以单调增区间是(0,正无穷),单调减区间是(负无穷,0]
2、
f(x)=e^x - x + 1/2 x^2≥1/2x^2+ax+b即 e^x >=(a+1)x +b成立
(a+1)b的最大值,我们考虑(a+1),b同号时的情况。不妨设a+1>0,b>0
则e^x >=(a+1)x +b中,令x=1得a+1+b<=1
从而(a+1)b <=[(a+1)+b]^2 /4=1/4
即(a+1)b的最大值=1/4
f(x)=f′(1)e^(x-1)-f(0)x+1/2x^2中,令x=0的f'(1)=ef(0)
所以f(x)=f(0)e^x-f(0)x+1/2x^2
关于x求导得:f'(x)=f(0)e^x-f(0)+x
故f'(1)=f(0)e-f(0)+1=ef(0)解得f(0)=1
所以f(x)=e^x - x + 1/2 x^2
f'(x)=e^x-1+x
当x>0时,f'(x)>0,函数单调增加
当x<=0时,f'(x)<=0,函数单调减少。
所以单调增区间是(0,正无穷),单调减区间是(负无穷,0]
2、
f(x)=e^x - x + 1/2 x^2≥1/2x^2+ax+b即 e^x >=(a+1)x +b成立
(a+1)b的最大值,我们考虑(a+1),b同号时的情况。不妨设a+1>0,b>0
则e^x >=(a+1)x +b中,令x=1得a+1+b<=1
从而(a+1)b <=[(a+1)+b]^2 /4=1/4
即(a+1)b的最大值=1/4
展开全部
这个满意回答是错误的。
“则e^x >=(a+1)x +b中,令x=1得a+1+b<=1”
x=1时e^x应等于e而不是1
而且就算这里算对了,求出来的答案是e^2/4,也不是正确答案。
前面那个不妨设感觉怪怪的。可能问题出在那里。
正确答案是e/2。
“则e^x >=(a+1)x +b中,令x=1得a+1+b<=1”
x=1时e^x应等于e而不是1
而且就算这里算对了,求出来的答案是e^2/4,也不是正确答案。
前面那个不妨设感觉怪怪的。可能问题出在那里。
正确答案是e/2。
参考资料: http://wenku.baidu.com/view/d09912c1aa00b52acfc7ca58.html###
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询