在三角形ABC中,设AD为BC边上的高,且AD=BC,b、c分别表示角B、C所对边的长,则b/c+c/b 的取值范围是什么?

具体一些,根号5怎么来的... 具体一些,根号5怎么来的 展开
雪域高原987
2012-08-23 · TA获得超过9417个赞
知道大有可为答主
回答量:3568
采纳率:100%
帮助的人:2099万
展开全部
由面积关系得a²=bcsinA①
由余弦定理得a²=b²+c²-2bccosA②
将①代入②得bc(sinA+2cosA)=b²+c²
即b/c+c/b=b²+c²/bc=sinA+2cosA=√5sin(A+α)≤√5
其中tanα=2
因此b/c+c/b的最大值为√5
又可算出sinα=2/√5
所以取值范围:(2,√5]

sinA+2cosA=√5sin(A+α)的原因
是由以下公式来的
Asinα+Bcosα
= √(A+B)[A/√(A+B)* sinα+ B/√(A+B)cosα]
=√(A+B) sin(α+φ)
其中sinφ =B/√(A+B),cosφ=A/√(A+B)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式