用图形验证勾股定理。

用图形来验证:在一个RT三角形里,两个直角边平方和等于第三条边的平方。要求:1.最好不要重复八年级教材书上面举出的两个例子。2.要用四个直角三角形拼出来的图形来验证。3.... 用图形来验证:在一个RT三角形里,两个直角边平方和等于第三条边的平方。要求:1.最好不要重复八年级教材书上面举出的两个例子。2.要用四个直角三角形拼出来的图形来验证。3.高分悬赏,最好不要应付我,要详细!4.附上图形图片,或者附上网址。5.最好多一点。 展开
 我来答
百度网友af34c30f5
2012-08-23 · TA获得超过4.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:65%
帮助的人:7036万
展开全部
证法1
  作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。过点C作AC的延长线交DF于点P.
  ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
  ∴ ∠EGF = ∠BED,
  ∵ ∠EGF + ∠GEF = 90°,
  ∴ ∠BED + ∠GEF = 90°,
  ∴ ∠BEG =180°―90°= 90°
  又∵ AB = BE = EG = GA = c,
  ∴ ABEG是一个边长为c的正方形。
  ∴ ∠ABC + ∠CBE = 90°
  ∵ RtΔABC ≌ RtΔEBD,
  ∴ ∠ABC = ∠EBD.
  ∴ ∠EBD + ∠CBE = 90°
  即 ∠CBD= 90°
  又∵ ∠BDE = 90°,∠BCP = 90°,
  BC = BD = a.
  ∴ BDPC是一个边长为a的正方形。
  同理,HPFG是一个边长为b的正方形.
  设多边形GHCBE的面积为S,则
  A2+B2=C2

证法2
  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形。把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
  过点Q作QP∥BC,交AC于点P.
  过点B作BM⊥PQ,垂足为M;再过点
  F作FN⊥PQ,垂足为N.
  ∵ ∠BCA = 90°,QP∥BC,
  ∴ ∠MPC = 90°,
  ∵ BM⊥PQ,
  ∴ ∠BMP = 90°,
  ∴ BCPM是一个矩形,即∠MBC = 90°。
  ∵ ∠QBM + ∠MBA = ∠QBA = 90°,
  ∠ABC + ∠MBA = ∠MBC = 90°,
  ∴ ∠QBM = ∠ABC,
  又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,
  ∴ RtΔBMQ ≌ RtΔBCA.
  同理可证RtΔQNF ≌ RtΔAEF.即A2+B2=C2
证法3
  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再作一个边长为c的正方形。把它们拼成如图所示的多边形.
  分别以CF,AE为边长做正方形FCJI和AEIG,
  ∵EF=DF-DE=b-a,EI=b,
  ∴FI=a,
  ∴G,I,J在同一直线上,
  ∵CJ=CF=a,CB=CD=c,
  ∠CJB = ∠CFD = 90°,
  ∴RtΔCJB ≌ RtΔCFD ,
  同理,RtΔABG ≌ RtΔADE,
  ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE
  ∴∠ABG = ∠BCJ,
  ∵∠BCJ +∠CBJ= 90°,
  ∴∠ABG +∠CBJ= 90°,
  ∵∠ABC= 90°,
  ∴G,B,I,J在同一直线上,
  A2+B2=C2。
证法4
  作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
  BF、CD. 过C作CL⊥DE,
  交AB于点M,交DE于点L.
  ∵ AF = AC,AB = AD,
  ∠FAB = ∠GAD,
  ∴ ΔFAB ≌ ΔGAD,
  ∵ ΔFAB的面积等于,
  ΔGAD的面积等于矩形ADLM
  的面积的一半,
  ∴ 矩形ADLM的面积 =.
  同理可证,矩形MLEB的面积 =.
  ∵ 正方形ADEB的面积
  = 矩形ADLM的面积 + 矩形MLEB的面积
  ∴ 即A2+B2=C2
证法5(欧几里得的证法)
  《几何原本》中的证明
  在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
  在正式的证明中,我们需要四个辅助定理如下:
  如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。
  其证明如下:
  设△ABC为一直角三角形,其直角为CAB。其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。分别连接CF、AD,形成两个三角形BCF、BDA。∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。因此四边形 BDLK 必须有相同的面积 BAGF = AB²;。同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC2;。把这两个结果相加, AB2;+ AC2;; = BD×BK + KL×KC。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB2;+ AC2;= BC2;。此证明是于欧几里得《几何原本》一书第1.47节所提出的
证法6(欧几里德(Euclid)射影定理证法)
  如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高
  通过证明三角形相似则有射影定理如下:
  (1)(BD)2;=AD•DC,
  (2)(AB)2;=AD•AC ,
  (3)(BC)2;=CD•AC。 
  由公式(2)+(3)得:(AB)2;+(BC)2;=AD•AC+CD•AC =(AD+CD)•AC=(AC)2;,
  图1即 (AB)2;+(BC)2;=(AC)2,这就是勾股定理的结论。

图1
证法七(赵爽弦图)
  在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:
  4×(ab/2)+(b-a)2 =c2; 
  化简后便可得:a2 +b2 =c2;
  亦即:c=(a2 +b2 )1/2
  勾股定理的别名 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。
  中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。
  在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。
  在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.
  前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。
  1 周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。
  2. 陈良佐:周髀算经勾股定理的证明与出入相补原理的关系。刊於《汉学研究》, 1989年第7卷第1期,255-281页。
  3. 李国伟: 论「周髀算经」“商高曰数之法出于圆方”章。刊於《第二届科学史研讨会汇刊》, 台湾,1991年7月, 227-234页。
  4. 李继闵:商高定理辨证。刊於《自然科学史研究》,1993年第12卷第1期,29-41页。
  5. 曲安京: 商高、赵爽与刘徽关於勾股定理的证明。刊於《数学传播》20卷, 台湾,1996年9月第3期, 20-27页
证法8(达芬奇的证法)

达芬奇的证法
  三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形。然后需要知道的是角A'和角D'都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A'和角D'都是直角。
  证明:
  第一张中多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF2+OE2+OF•OE
  第三张中多边形A'B'C'D'E'F'的面积S2=S正方形B'C'E'F'+2△C'D'E'=E'F'2+C'D'•D'E'
  因为S1=S2
  所以OF2+OE2+OF•OE=E'F'2+C'D'•D'E'
  又因为C'D'=CD=OE,D'E'=AF=OF
  所以OF2+OE2=E'F'2
  因为E'F'=EF
  所以OF2+OE2=EF2
  勾股定理得证。
证法9
  从这张图可以得到一个矩形和三个三角形,推导公式如下:

b ( a + b )= 1/2c2 + ab + 1/2(b + a)(b - a)
  矩形面积 =(中间三角形)+(下方)2个直角三角形+(上方)1个直
  角三角形。
  (简化) 2ab + 2b2;= c2; + b2;- a2;+ 2ab
  2b2 - b2 + a2 = c2;
  a2 + b2 = c2;
  注:根据加菲尔德图进一步得到的图形。
证法10
  在Rt三角形ABC中,角C=90度,作CH垂直于AB于H。
  令a/sinA=b/sinB=c/sinC=d
  1=sin90=sinC=c/d=AH/d+BH/d=cosA×b/d+cosB×a/d=cosA×sinB+cosB×sinA=a/c•a/c+b/c•b/c
  =(a^2+b^2)/c^2=1
  所以a^2+b^2=c^2
  得证。
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
平淡无奇好
2015-10-13 · TA获得超过2.2万个赞
知道大有可为答主
回答量:5025
采纳率:84%
帮助的人:1268万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式