设向量m=(cosx,sinx),n=(2根号2+sinx,2根号2-cosx),若f(x)=m*n
展开全部
解:
f(x)=m•n=cosx(2√2+sinx)+sinx(2√2-cosx)=2√2cosx+2√2sinx+sinxcosx-sinxcosx=2√2•(cosx+sinx)=2√2•√2sin(x+π/4)=4sin(x+π/4)
⑴
f(x)的最小正周期T=2π/ω=2π/1=2π
⑵
f(2x)=4sin(2x+π/4)
令-π/2+2kπ≤2x+π/4≤π/2+2kπ
得-3π/8+kπ ≤ x ≤ π/8+kπ
故f(2x)的单调递增区间为[-3π/8+kπ,π/8+kπ].
f(x)=m•n=cosx(2√2+sinx)+sinx(2√2-cosx)=2√2cosx+2√2sinx+sinxcosx-sinxcosx=2√2•(cosx+sinx)=2√2•√2sin(x+π/4)=4sin(x+π/4)
⑴
f(x)的最小正周期T=2π/ω=2π/1=2π
⑵
f(2x)=4sin(2x+π/4)
令-π/2+2kπ≤2x+π/4≤π/2+2kπ
得-3π/8+kπ ≤ x ≤ π/8+kπ
故f(2x)的单调递增区间为[-3π/8+kπ,π/8+kπ].
展开全部
m=(cosx,sinx),n=(2根号2+sinx,2根号2-cosx),
f(x)=mn=cosx(2根号2+sinx)+sinx(2根号2-cosx)
=cosx*2根号2+cosxsinx+sinx*2根号2-sinxcosx
=2根号2(sinx+cosx)
=2根号2*根号2(根号2/2sinx+根号2/2cosx)
=4(sinxcospai/4+cosxsinpai/4)
=4sin(x+pai/4)
T=2pai/1=2pai
f(2x)=4sin(2x+pai/4)
当2x+pai/4E[2kpai-pai/2,2kpai+pai/2]时为增,即:
2xE[2kpai-3pai/4,2kpai+pai/4]
即xE[kpai-3pai/8,kpai+pai/8]为增的.
当2x+pai/4E(2kpai+pai/2,2kpai+3pai/2)为减
即:xE(kpai+pai/8,kpai+5pai/8)为减的.
递增区间为:[kpai-3pai/8,kpai+pai/8]
f(x)=mn=cosx(2根号2+sinx)+sinx(2根号2-cosx)
=cosx*2根号2+cosxsinx+sinx*2根号2-sinxcosx
=2根号2(sinx+cosx)
=2根号2*根号2(根号2/2sinx+根号2/2cosx)
=4(sinxcospai/4+cosxsinpai/4)
=4sin(x+pai/4)
T=2pai/1=2pai
f(2x)=4sin(2x+pai/4)
当2x+pai/4E[2kpai-pai/2,2kpai+pai/2]时为增,即:
2xE[2kpai-3pai/4,2kpai+pai/4]
即xE[kpai-3pai/8,kpai+pai/8]为增的.
当2x+pai/4E(2kpai+pai/2,2kpai+3pai/2)为减
即:xE(kpai+pai/8,kpai+5pai/8)为减的.
递增区间为:[kpai-3pai/8,kpai+pai/8]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
m*n=cosx(2√2+sinx)+sinx(2√2-cosx)
=2√2cosx+cosxsinx+2√2sinx-sinxcosx
=2√2sinx+2√2cosx
=4(√2/2sinx+√2/2cosx)
=4sin(x+π/4)
w=1,T=2π/w=2π
f(x)=4sin(x+π/4)
(2)
f(x)=4sin(x+π/4)
f(2x)=4sin(2x+π/4)
函数f(2x)可拆成:
y=2sint
t=2x+π/4
因为sint的单调增区间是:
-π/2+2kπ≤t≤π/2+2kπ
即
-π/2+2kπ≤2x+π/4≤π/2+2kπ==>
-3π/8+kπ≤x≤π/8+kπ
所以原函数的单调增区间是:
【-3π/8+kπ,π/8+kπ】
=2√2cosx+cosxsinx+2√2sinx-sinxcosx
=2√2sinx+2√2cosx
=4(√2/2sinx+√2/2cosx)
=4sin(x+π/4)
w=1,T=2π/w=2π
f(x)=4sin(x+π/4)
(2)
f(x)=4sin(x+π/4)
f(2x)=4sin(2x+π/4)
函数f(2x)可拆成:
y=2sint
t=2x+π/4
因为sint的单调增区间是:
-π/2+2kπ≤t≤π/2+2kπ
即
-π/2+2kπ≤2x+π/4≤π/2+2kπ==>
-3π/8+kπ≤x≤π/8+kπ
所以原函数的单调增区间是:
【-3π/8+kπ,π/8+kπ】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)解:f(x)=m*n
=(cosx,sinx)*(2跟号2+sinx,2根号2-cosx)
=cosx*(2根号2+sinx)+sinx*(2根号2-cosx)
=2根号2*cosx+sinx*cosx+2根号2*sinx-sinx*cosx
=2根号2*cosx+2根号2*sinx
=2根号2*(cosx+sinx)
=4(根号2/2*cosx+根号2/2*sinx) 【这里提取了公因数根号2】
=4sin(x+π/4)
∴f(x)的最小正周期T=2π/w=2π
(2)∴f(2x)=4sin(2x+π/4)
单调递增:-π/2+2kπ≤2x+π/4≤π/2+2kπ (k∈R)
解得:-3/8π+kπ≤x≤π/8+kπ (k∈R)
∴f(2x)的单调递增区间为
[-3/8π+kπ,π/8+kπ] (k∈R)
=(cosx,sinx)*(2跟号2+sinx,2根号2-cosx)
=cosx*(2根号2+sinx)+sinx*(2根号2-cosx)
=2根号2*cosx+sinx*cosx+2根号2*sinx-sinx*cosx
=2根号2*cosx+2根号2*sinx
=2根号2*(cosx+sinx)
=4(根号2/2*cosx+根号2/2*sinx) 【这里提取了公因数根号2】
=4sin(x+π/4)
∴f(x)的最小正周期T=2π/w=2π
(2)∴f(2x)=4sin(2x+π/4)
单调递增:-π/2+2kπ≤2x+π/4≤π/2+2kπ (k∈R)
解得:-3/8π+kπ≤x≤π/8+kπ (k∈R)
∴f(2x)的单调递增区间为
[-3/8π+kπ,π/8+kπ] (k∈R)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询