若不等式x^2-2mx+2m+1>0,对0≤x≤1的所有实数x都成立,则m的取值范围
展开全部
解:
用分离参数的方法:-)
不等式x^2-2mx+2m+1>0在[0,1]上恒成立
则m>(x^2+1)/[2(x-1)]
只需m>[(x^2+1)/[2(x-1)]]max即可
设函数f(x)=(x^2+1)/[2(x-1)],则函数f(x)=(x^2+1)/[2(x-1)]在区间[0,1]上是减函数
∴m>f(x)max=f(0)=-1/2
故m的取值范围为(-1/2,+∞).
用分离参数的方法:-)
不等式x^2-2mx+2m+1>0在[0,1]上恒成立
则m>(x^2+1)/[2(x-1)]
只需m>[(x^2+1)/[2(x-1)]]max即可
设函数f(x)=(x^2+1)/[2(x-1)],则函数f(x)=(x^2+1)/[2(x-1)]在区间[0,1]上是减函数
∴m>f(x)max=f(0)=-1/2
故m的取值范围为(-1/2,+∞).
更多追问追答
追问
“
设函数f(x)=(x^2+1)/[2(x-1)],则函数f(x)=(x^2+1)/[2(x-1)]在区间[0,1]上是减函数
”
能详细说一下吗
追答
嗯嗯,当然可以啦
你可以用导数求他的单调区间
亦或是用定义法证明它在[0,1]是减函数
定义法证明的话:
任取x1,x2∈[0,1],且x1<x2,则
f(x1)-f(x2)=【变形过程省略】…………=……>0
∴f(x1)>f(x2)
∴…………是减函数
OK~~
展开全部
先由x^2-2mx+2m+1>0得:
x^2+1.>2m(x-1)
如果x=1对所有的m都成立,
如果x≠1,0≤x<1
x^2+1>2m(x-1)
2m>(x^2+1)/(x-1)=[(x^2-x)+(x-1)+2)]/(x-1)=x+1+1/(x-1)=(x-1)+1/(x-1)+2
2m>x-1)+1/(x-1)+2
(-2m)<(1-x)+1/(1-x)-2=g(x)
g(x) ' = -1+1/(1-x)^2>0
所以g(x)在【0,1)上单调增
(-2m)恒小于右边,就是比它的最小值还要大,g(x)(min)=g(0)=0
所以-2m≤0==>m≥0
综合可知
m≥0
x^2+1.>2m(x-1)
如果x=1对所有的m都成立,
如果x≠1,0≤x<1
x^2+1>2m(x-1)
2m>(x^2+1)/(x-1)=[(x^2-x)+(x-1)+2)]/(x-1)=x+1+1/(x-1)=(x-1)+1/(x-1)+2
2m>x-1)+1/(x-1)+2
(-2m)<(1-x)+1/(1-x)-2=g(x)
g(x) ' = -1+1/(1-x)^2>0
所以g(x)在【0,1)上单调增
(-2m)恒小于右边,就是比它的最小值还要大,g(x)(min)=g(0)=0
所以-2m≤0==>m≥0
综合可知
m≥0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
配方,x^2-2mx+2m+1=(x-m)^2-(m-1)^2 +2>0,设
y=(x-m)^2-(m-1)^2 +2
讨论
:
1.....m<0时,
(x-m)^2
在0≤x≤1上的最小值为(0-m)^2 ,y最小值=m ^2- (m-1)^2 +2=2m+1 >0,则-0.5<m<0
2.....0≤m≤1,易证,在0≤x≤1上y>0
3.....m>1时,(x-m)^2
在0≤x≤1上的最小值为(1-m)^2 ,
y最小值=
(1-m)^2 - (m-1)^2 +2=2>0.则m>1
综上所述,m的取值范围为 m>-0.5
好久没做数学题。。不知道做对没。
y=(x-m)^2-(m-1)^2 +2
讨论
:
1.....m<0时,
(x-m)^2
在0≤x≤1上的最小值为(0-m)^2 ,y最小值=m ^2- (m-1)^2 +2=2m+1 >0,则-0.5<m<0
2.....0≤m≤1,易证,在0≤x≤1上y>0
3.....m>1时,(x-m)^2
在0≤x≤1上的最小值为(1-m)^2 ,
y最小值=
(1-m)^2 - (m-1)^2 +2=2>0.则m>1
综上所述,m的取值范围为 m>-0.5
好久没做数学题。。不知道做对没。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询