
MATLAB拟合多元非线性函数?
自变量x1=【10198.498.898.598.698.298.899.299.5100.6101.9101.5102.7102.4102.8103.1102.9103...
自变量x1=【
101 98.4 98.8 98.5 98.6 98.2 98.8 99.2 99.5 100.6 101.9 101.5 102.7 102.4 102.8 103.1 102.9 103.3 103.5 103.6 104.4 105.1 104.6 104.9 104.9 105.4 105.3 105.5 106.4 106.5 106.2 106.1 105.5 104.2 104.1 104.5 103.2 103.6 103.4 103 102.2 101.8
】
x2=【
496135.31 506708.07 530626.71 540481.21 548263.51 568916.2 573102.85 576698.95 576698.95 586643.29 594604.72 610224.52 625609.29 636072.26 649947.46 656561.22 663351.37 673921.72 674051.48 687506.92 696471.5 699776.74 710339.03 725851.79 733884.83 736130.86 758130.88 757384.56 763409.22 780820.85 772923.65 780852.3 787406.2 816829.25 825493.94 851590.9 855898.89 867177.63 895600 889600 900000 925000 919100
】
因变量y=【
6.903106 7.225627 8.235698 8.568031 9.057412 10.11868 11.53129 9.041437 9.371831 10.11123 10.83773 11.08377 10.10374 10.33224 10.57647 9.668508 8.662745 7.931444 7.811012 7.725547 7.753376 8.71688 8.187911 8.159127 8.164803 8.515319 8.592566 8.616842 7.977995 7.960922 7.722894 7.343536 6.759 7.079082 6.683803 6.322855 6.596952 7.004311 6.512667 6.890974 6.786185 6.329737 5.968858
】
怎样用MATLAB拟合y关于x1和x2的非线性曲线呢?选的模型是y=a*x1+b*x2+c*x1.^2+d*x2.^2+e 展开
101 98.4 98.8 98.5 98.6 98.2 98.8 99.2 99.5 100.6 101.9 101.5 102.7 102.4 102.8 103.1 102.9 103.3 103.5 103.6 104.4 105.1 104.6 104.9 104.9 105.4 105.3 105.5 106.4 106.5 106.2 106.1 105.5 104.2 104.1 104.5 103.2 103.6 103.4 103 102.2 101.8
】
x2=【
496135.31 506708.07 530626.71 540481.21 548263.51 568916.2 573102.85 576698.95 576698.95 586643.29 594604.72 610224.52 625609.29 636072.26 649947.46 656561.22 663351.37 673921.72 674051.48 687506.92 696471.5 699776.74 710339.03 725851.79 733884.83 736130.86 758130.88 757384.56 763409.22 780820.85 772923.65 780852.3 787406.2 816829.25 825493.94 851590.9 855898.89 867177.63 895600 889600 900000 925000 919100
】
因变量y=【
6.903106 7.225627 8.235698 8.568031 9.057412 10.11868 11.53129 9.041437 9.371831 10.11123 10.83773 11.08377 10.10374 10.33224 10.57647 9.668508 8.662745 7.931444 7.811012 7.725547 7.753376 8.71688 8.187911 8.159127 8.164803 8.515319 8.592566 8.616842 7.977995 7.960922 7.722894 7.343536 6.759 7.079082 6.683803 6.322855 6.596952 7.004311 6.512667 6.890974 6.786185 6.329737 5.968858
】
怎样用MATLAB拟合y关于x1和x2的非线性曲线呢?选的模型是y=a*x1+b*x2+c*x1.^2+d*x2.^2+e 展开
2个回答
展开全部
>> x1=[101 98.4 98.8 98.5 98.6 98.2 98.8 99.2 99.5 100.6 101.9 101.5 102.7 102.4 102.8 103.1 102.9 103.3 103.5 103.6 104.4 105.1 104.6 104.9 104.9 105.4 105.3 105.5 106.4 106.5 106.2 106.1 105.5 104.2 104.1 104.5 103.2 103.6 103.4 103 102.2 101.8
];
>> x2=[496135.31 506708.07 530626.71 540481.21 548263.51 568916.2 573102.85 576698.95 576698.95 586643.29 594604.72 610224.52 625609.29 636072.26 649947.46 656561.22 663351.37 673921.72 674051.48 687506.92 696471.5 699776.74 710339.03 725851.79 733884.83 736130.86 758130.88 757384.56 763409.22 780820.85 772923.65 780852.3 787406.2 816829.25 825493.94 851590.9 855898.89 867177.63 895600 889600 900000 925000 ];
>> x3=x1.^2;
>> x4=x2.^2;
>> y=[6.903106 7.225627 8.235698 8.568031 9.057412 10.11868 11.53129 9.041437 9.371831 10.11123 10.83773 11.08377 10.10374 10.33224 10.57647 9.668508 8.662745 7.931444 7.811012 7.725547 7.753376 8.71688 8.187911 8.159127 8.164803 8.515319 8.592566 8.616842 7.977995 7.960922 7.722894 7.343536 6.759 7.079082 6.683803 6.322855 6.596952 7.004311 6.512667 6.890974 6.786185 6.329737 ];
>> x=[ones(42,1),x1',x2',x3',x4'];
>> [b,bint,r,rint,stats]=regress(y',x)
> In regress at 78
b =
0
-0.1380
0.0001
-0.0014
-0.0000
e=b(1) a=b(2) b=b(3) c=b(4) d=b(5)
y=-0.1380*x1+0.0001*x2-0.0014*x1.^2
];
>> x2=[496135.31 506708.07 530626.71 540481.21 548263.51 568916.2 573102.85 576698.95 576698.95 586643.29 594604.72 610224.52 625609.29 636072.26 649947.46 656561.22 663351.37 673921.72 674051.48 687506.92 696471.5 699776.74 710339.03 725851.79 733884.83 736130.86 758130.88 757384.56 763409.22 780820.85 772923.65 780852.3 787406.2 816829.25 825493.94 851590.9 855898.89 867177.63 895600 889600 900000 925000 ];
>> x3=x1.^2;
>> x4=x2.^2;
>> y=[6.903106 7.225627 8.235698 8.568031 9.057412 10.11868 11.53129 9.041437 9.371831 10.11123 10.83773 11.08377 10.10374 10.33224 10.57647 9.668508 8.662745 7.931444 7.811012 7.725547 7.753376 8.71688 8.187911 8.159127 8.164803 8.515319 8.592566 8.616842 7.977995 7.960922 7.722894 7.343536 6.759 7.079082 6.683803 6.322855 6.596952 7.004311 6.512667 6.890974 6.786185 6.329737 ];
>> x=[ones(42,1),x1',x2',x3',x4'];
>> [b,bint,r,rint,stats]=regress(y',x)
> In regress at 78
b =
0
-0.1380
0.0001
-0.0014
-0.0000
e=b(1) a=b(2) b=b(3) c=b(4) d=b(5)
y=-0.1380*x1+0.0001*x2-0.0014*x1.^2

2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询