在数列{an}中,对任意自然数n∈N*恒有a1+a2+···+an=2n-1,则a1+a2^2+a3^3+···+an^n=

xuzhouliuying
高粉答主

2012-08-24 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
解:
n=1时,a1=2×1-1=1
n≥2时,
a1+a2+...+a(n-1)+an=2n-1 (1)
a1+a2+...+a(n-1)=2(n-1)-1 (2)
(1)-(2)
an=2n-1-2(n-1)+1=2,为定值。
n=1时,a1=1≠2
数列{an}的通项公式为
an=1 n=1
2 n≥2

n=1时,a1=1
n≥2时,
a1+a2²+a3³+...+anⁿ
=1+2²+2³+...+2ⁿ
=1+4×[2^(n-1) -1]/(2-1)
=2^(n+1) -3
n=1时,2^(n+1)-3=2²-3=4-3=1,同样满足。
综上,得
a1+a2²+a3³+...+anⁿ=2^(n+1) -3

^表示指数,2^(n+1)表示2的n+1次方。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式