全部都不存在,可以从函数的图像上看出来,也就是说极限不存在。
函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等。
如果左右极限不相同、或者不存在。则函数在该点极限不存在。即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。
在图像上,可以清晰的看出,sinx,cosx在x趋近于无穷的时候,左右极限是不相等的,值域有一个变化范围,所以极限不存在。tanx和cootx也一样。
建立的概念:
(1)函数在点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。
(2)函数在点导数的定义,是函数值的增量与自变量的增量之比 ,当时的极限。
(3)函数在点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。
(4)数项级数的敛散性是用部分和数列的极限来定义的。
(5)广义积分是定积分其中为任意大于的实数当时的极限。
以上内容参考:百度百科-极限
全部都不存在,可以从函数的图像上看出来,也就是说极限不存在。
函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等。
如果左右极限不相同、或者不存在。则函数在该点极限不存在。即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。
在图像上,可以清晰的看出,sinx,cosx在x趋近于无穷的时候,左右极限是不相等的,值域有一个变化范围,所以极限不存在。tanx和cootx也一样。
扩展资料:
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
7、利用两个重要极限公式求极限
如果把无穷都理解为未知数X
这样就变成了一个题目
sin(x)cos(x)tan(x)cot(x)(x趋于无穷大)
在X有意义的情况下,上式化为sin(x)cos(x)=0.5sin(2x)x(趋于无穷大)
cos和sin一样
tan无穷也要分情况讨论,当周期是派/2+K派的都是趋向于正无穷,K派的是负无穷,从图象可以看得到
cot和tan一样也可以用同样方法分析,结果也是趋向于正无穷或负无穷
tan(x),cot(x):±∞,±∞