已知等比数列{an}的前n项和是Sn,若S30=13S10,S10+S30=140,则S25的值
2个回答
展开全部
S30=13S10,S10+S30=140
所以
s10=140÷(13+1)=10
s30=140-10=130
a1(1-q^10)/(1-q)=10
a1(1-q^30)/(1-q)=130
相除,得
(1-q^30)/(1-q^10)=13
令q^10=t>0
(1-t³)/(1-t)=13
t²+t+1=13
t²+t-12=0
(t-3)(t+4)=0
所以
t=3=q^10
q^5=±√3
a1(1-q^10)/(1-q)=10
a1(1-3)/(1-q)=10
a1/(1-q)=-5
所以
s25=a1(1-q^25)/(1-q)
=-5(1-(±√3)^5)
=-5(1±9√3)
所以
s10=140÷(13+1)=10
s30=140-10=130
a1(1-q^10)/(1-q)=10
a1(1-q^30)/(1-q)=130
相除,得
(1-q^30)/(1-q^10)=13
令q^10=t>0
(1-t³)/(1-t)=13
t²+t+1=13
t²+t-12=0
(t-3)(t+4)=0
所以
t=3=q^10
q^5=±√3
a1(1-q^10)/(1-q)=10
a1(1-3)/(1-q)=10
a1/(1-q)=-5
所以
s25=a1(1-q^25)/(1-q)
=-5(1-(±√3)^5)
=-5(1±9√3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |