已知函数y=根号下(1—x)+根号下(x+3)的最大值为M,最小值为m,则m/M的值为
2个回答
展开全部
1-x>=0 x<=1 x+3>=0 x>=-3
-3<=x<=1
因为y=正数+正数》0,所以我们来求y^2
y^2=1-x+x+3+根号(1-x)(x+3)=4+根号(-x^2-2x+3)
接在来求根号-(x+1)^2+4的最大值, M^2=4+2=6
m^2=4+0=4
m/M=根号2/3=根号6/3
恩,确实错了,这里错了
y^2=1-x+x+3+根号(1-x)(x+3)=4+根号(-x^2-2x+3)
应该是:
y^2=1-x+x+3+2*根号(1-x)(x+3)=4+2*根号(-x^2-2x+3)
求2*根号(-x^2-2x+3)的最值
即2*根号-(x+1)^2+4的最值 当x=-1时2*根号-(x+1)^2+4最大=4 所以M^2=8 M=2根号2
当x=-3时最小=0,即2*根号-(x+1)^2+4=0 所以m^2=4 m=2
m/M=2/2根号2=(根号2)/2
老是粗心,哎,但是你要学到这种方法,这也是一种题型
-3<=x<=1
因为y=正数+正数》0,所以我们来求y^2
y^2=1-x+x+3+根号(1-x)(x+3)=4+根号(-x^2-2x+3)
接在来求根号-(x+1)^2+4的最大值, M^2=4+2=6
m^2=4+0=4
m/M=根号2/3=根号6/3
恩,确实错了,这里错了
y^2=1-x+x+3+根号(1-x)(x+3)=4+根号(-x^2-2x+3)
应该是:
y^2=1-x+x+3+2*根号(1-x)(x+3)=4+2*根号(-x^2-2x+3)
求2*根号(-x^2-2x+3)的最值
即2*根号-(x+1)^2+4的最值 当x=-1时2*根号-(x+1)^2+4最大=4 所以M^2=8 M=2根号2
当x=-3时最小=0,即2*根号-(x+1)^2+4=0 所以m^2=4 m=2
m/M=2/2根号2=(根号2)/2
老是粗心,哎,但是你要学到这种方法,这也是一种题型
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询