设二次方程anx2-an+1x+1=0(n∈N)有两根α和β,且满足6α-2αβ+6β=3.

设二次方程anx2-an+1x+1=0(n∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用an表示an+1;(2)求证:数列{an-2/3}是等比数列;(3)... 设二次方程anx2-an+1x+1=0(n∈N)有两根α和β,且满足6α-2αβ+6β=3.
(1)试用an表示an+1;
(2)求证:数列{an-2/3}是等比数列;
(3)当a1=7/6时,求数列{an}的通项公式。

答案: 解:(1)由韦达定理得:α+β=a(n+1) /an ,α•β= 1/an,
由6α-2αβ+6β=3得6• a(n+1)/an-2/an=3,
故an+1= 1/2an + 1/3
(2)证明:因为an+1- 2/3=1/2an-1/3=1/2(an - 2/3),
所以[ a(n+1)-2/3] / [an-2/3] = 1/2
故数列{an- 2/3}是公比为2/3的等比数列;
(3)当a1=7/6时,数列{an-2/3}的首项a1- 2/3=7/6-2/3=1/2,
故an- 2/3=1/2 • (1/2)^n-1(n-1次方) =(1/2)^n(n次方)
于是.an=(1/2)^n(n次方)+2/3.

您能给我讲一下“由韦达定理得:α+β=a(n+1) /an”是怎样由韦达定理的来的么
展开
fkdwn
2012-08-27 · TA获得超过1.3万个赞
知道大有可为答主
回答量:2583
采纳率:0%
帮助的人:1377万
展开全部
对于一元二次方程ax²+bx+c=0, 如方程存在实数根x1,x2,则有韦达定理
两根之和x1+x2=-b/a
两根之积x1*x2=c/a

在题中方程为a(n)x²-a(n+1)x+1=0, 故a=a(n), b=-a(n+1), 存在两根α和β
∴由韦达定理得:α+β=a(n+1) /an
love543285692
2012-08-27 · TA获得超过148个赞
知道答主
回答量:83
采纳率:0%
帮助的人:79.9万
展开全部
韦达定理对虚数根也是成立的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式