1个回答
展开全部
因S=1/2*absinC,所以2S=absinC.
所以,absinC=(a+b)^2-c^2=a^2+b^2-c^2+2ab.
所以,sinC= (a^2+b^2-c^2)/ab+(2ab)/ab=( a^2+b^2-c^2)/ab+2.
由余弦定理知,cosC=( a^2+b^2-c^2)/2ab,所以,2cosC=( a^2+b^2-c^2)/ab.
所以,sinC=2cosC+2,两边都除以cosC得:tanC=2+2sec=2+2√(1+tan^2C),
即tanC=2+2√(1+tan^2C),
tanC-2=2√(1+tan^2C),两边平方并化简得:tanC(3tanC+2)=0.
因tanC≠0,所以有3tanC+2=0,tanc=-2/3.
所以,absinC=(a+b)^2-c^2=a^2+b^2-c^2+2ab.
所以,sinC= (a^2+b^2-c^2)/ab+(2ab)/ab=( a^2+b^2-c^2)/ab+2.
由余弦定理知,cosC=( a^2+b^2-c^2)/2ab,所以,2cosC=( a^2+b^2-c^2)/ab.
所以,sinC=2cosC+2,两边都除以cosC得:tanC=2+2sec=2+2√(1+tan^2C),
即tanC=2+2√(1+tan^2C),
tanC-2=2√(1+tan^2C),两边平方并化简得:tanC(3tanC+2)=0.
因tanC≠0,所以有3tanC+2=0,tanc=-2/3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询