如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,若CD的长为5,则四边形ABCD的面积为————

帐号已注销
2012-08-28 · TA获得超过1933个赞
知道小有建树答主
回答量:829
采纳率:50%
帮助的人:366万
展开全部
解:作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,
∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE
∴∠BAC=∠DAE
又∵AB=AD,∠ACB=∠E=90°
∴△ABC≌△ADE(AAS)
∴BC=DE,AC=AE,
设BC=a,则DE=a,DF=AE=AC=4BC=4a,
CF=AC-AF=AC-DE=3a,
在Rt△CDF中,由勾股定理得,
CF2+DF2=CD2,即(3a)2+(4a)2=52,
解得:a=1,
∴y=S四边形ABCD=S梯形ACDE=12×(DE+AC)×DF
=12×(a+4a)×4a
=10a2
=10.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式