设X与Y是相互独立的随机变量,且X在区间[0,1]上服从均匀分布,Y服从参数为1的指数分布
(1)由已知,f(x)=1, (0<=x<=1),f(y)=e^(-y), (y>=0),Z大于0
那么F(z)=P(X+Y<z)
在坐标轴上画出积分区间
即0<=z<1时,x积分区间为(0,z),y积分区间为(0,z-x)
z>=1时,x积分区间为(0,1),y积分区间为(0,z-x)
在以上区间对f(x)*f(y)=e^(-y)积分,有
0<=z<1时,F(z)=e^(-z)+z-1
z>=1时,F(z)=e^(-z)-e^(1-z)+1
求导,有
0<=z<1时,f(z)=1-e^(-z)
z>=1时,f(z)=e^(1-z)-e^(-z)
因此,Z的概率密度函数为
f(z)=0,z<0
f(z)=1-e^(-z),0<=z<1
f(z)=e^(1-z)-e^(-z),z>=1时
(2)F(z))=P(-2lnX<z)=P(X>e^(-z/2))
当z<0时,F(z)=0
当z>=0时,对f(x)从e^(-z/2)到1积分,得F(z)=1-e^(-z/2)
求导,有
f(z)=e^(-z/2)/2
因此,Z的概率密度函数为
f(z)=0,z<0
f(z)=e^(-z/2)/2,z>=0
扩展资料:
随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。
随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。
离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。
随机变量可以是离散型的,也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。
参考资料来源:百度百科——随机变量
那么F(z)=P(X+Y<z)
在坐标轴上画出积分区间
即0<=z<1时,x积分区间为(0,z),y积分区间为(0,z-x)
z>=1时,x积分区间为(0,1),y积分区间为(0,z-x)
在以上区间对f(x)*f(y)=e^(-y)积分,有
0<=z<1时,F(z)=e^(-z)+z-1
z>=1时,F(z)=e^(-z)-e^(1-z)+1
求导,有
0<=z<1时,f(z)=1-e^(-z)
z>=1时,f(z)=e^(1-z)-e^(-z)
因此,Z的概率密度函数为
f(z)=0,z<0
f(z)=1-e^(-z),0<=z<1
f(z)=e^(1-z)-e^(-z),z>=1时
(2)F(z))=P(-2lnX<z)=P(X>e^(-z/2))
当z<0时,F(z)=0
当z>=0时,对f(x)从e^(-z/2)到1积分,得F(z)=1-e^(-z/2)
求导,有
f(z)=e^(-z/2)/2
因此,Z的概率密度函数为
f(z)=0,z<0
f(z)=e^(-z/2)/2,z>=0