已知sin(α+π/3)+sina=-4√3/5,-π/2<α<0,则cos(α+2π/3)等于
3个回答
2012-08-29 · 知道合伙人教育行家
关注
展开全部
sin(α+π/3) + sina
= sinαcosπ/3+cosαsinπ/3+sinα
= 1/2sinα+√3/2cosα+sinα
= 3/2sinα+√3/2cosα
= √3(1/2sinα+1/2cosα)
= √3(sinαcosπ/6+cosαsinπ/6)
= √3sin(α+π/6) = -4√3/5
sin(α+π/6) = -4/5
cos(α+2π/3) = cos(α+π/6+π/2) = -sin(α+π/6) = 4/5
= sinαcosπ/3+cosαsinπ/3+sinα
= 1/2sinα+√3/2cosα+sinα
= 3/2sinα+√3/2cosα
= √3(1/2sinα+1/2cosα)
= √3(sinαcosπ/6+cosαsinπ/6)
= √3sin(α+π/6) = -4√3/5
sin(α+π/6) = -4/5
cos(α+2π/3) = cos(α+π/6+π/2) = -sin(α+π/6) = 4/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询