求求求!30道小学六年级的或初一的奥数题! 要有答案!
展开全部
等差数列
1、下面是按规律排列的一串数,问其中的第1995项是多少?
解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984
2、在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?
解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上数的和为35×(29+30+31+32+33)=5425
5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。
6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992?
解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。
7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?
解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。
8、有19个算式:
那么第19个等式左、右两边的结果是多少?
解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。
9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对?
解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。
10、如图,有一个边长为1米的下三角形,在每条边上从顶点开始,每隔2厘米取一个点,然后以这些点为端点,作平行线将大正三角形分割成许多边长为2厘米的小正三角形。求⑴边长为2厘米的小正三角形的个数,⑵所作平行线段的总长度。
解答:⑴ 从上数到下,共有100÷2=50行, 第一行1个,第二行3个,第三行5个,……,最后一行99个, 所以共有(1+99)×50÷2=2500个; ⑵所作平行线段有3个方向,而且相同, 水平方向共作了49条, 第一条2厘米,第二条4厘米,第三条6厘米,……, 最后一条98厘米, 所以共长(2+98)×49÷2×3=7350厘米。
11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?
解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。
13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?
解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫敲戳?个应该越多越好,有: 17+16+15+14+13=75棵, 所以最少的小队最少要种82-75=7棵。
14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少?
解答:最大与最小数的和为170-150=20,所以最大数最大为20-1=19, 当最大为19时,有19+18+17+16+15+14+13+12+11+10+9+8+7+1=170, 当最大为18时,有18+17+16+15+14+13+12+11+10+9+8+7+6+2=158, 所以最大数为19时,有第2个数为7。
周期问题
基础练习
1、(1)○△□□○△□□○△□□……第20个图形是(□)。
(2) 第39个棋子是(黑子)。
2、 小雨练习书法,她把“我爱伟大的祖国”这句话依次反复书写,第60个字应写(大)。
3、 二(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。
4、 有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。
5、 有同样大小的红、白、黑三种珠子共100个,按照3红2白1黑的要求不断地排下去。
……
(1)第52个是(白)珠。
(2)前52个珠子共有(17)个白珠。
6、甲问乙:今天是星期五,再过30天是星期(日)。
乙问甲:假如16日是星期一,这个月的31日是星期(二)。
2006年的5月1日是星期一,那么这个月的28日是星期(日)。
※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?(37÷4=9…1 第一个拿牌的人一定抓到“大王”,)
答案
1、(1)□。
(2)黑子。
2、大。
3、男同学。
4、第20个数字是(3),这20个数的和是(58)。
5、
(1)第52个是(白)珠。
(2)前52个珠子共有(17)个白珠。
6、(日)。(二)。(日)。
※ (37÷4=9…1 第一个拿牌的人一定抓到“大王”,)
提高练习
1、(1)○△□□○△□□○△□□……第20个图形是(□)。
(2)○□◎○□◎○□◎○…… 第25个图形是(○)。
2、运动场上有一排彩旗,一共34面,按“三红一绿两黄”排列着,最后一面是(绿旗)。
3、“从小爱数学从小爱数学从小爱数学……”依次排列,第33个字是(爱)。
4、(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。
5、有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。
6、甲问乙:今天是星期五,再过30天是星期(日)。
乙问甲:假如16日是星期一,这个月的31日是星期(二)。
2006年的5月1日是星期一,那么这个月的28日是星期(日)。
※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?
※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)
答案
1、(1)□。
(2)○。
2、绿旗。
3、爱。
4、(1)男同学。
5、第20个数字是(3),这20个数的和是(58)。
6、(日)。(二)。(日)。
※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)
小数的速算与巧算(二)
一、真空题
1. 计算 4.75-9.64+8.25-1.36=_____.
2. 计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.
3. 计算 (5.25+0.125+5.75) 8=_____.
4. 计算 34.5 8.23-34.5+2.77 34.5=_____.
5. 计算 6.25 0.16+264 0.0625+5.2 6.25+0.625 20=_____.
6. 计算 0.035 935+0.035+3 0.035+0.07 61 0.5=_____.
7. 计算 19.98 37-199.8 1.9+1998 0.82=_____.
8. 计算 13.5 9.9+6.5 10.1=_____.
9. 计算 0.125 0.25 0.5 64=_____.
10. 计算 11.8 43-860 0.09=_____.
二、解答题
11.计算 32.14+64.28 0.5378 0.25+0.5378 64.28 0.75-8 64.28 0.125 0.5378.
12. 计算 0.888 125 73+999 3.
13. 计算 1998+199.8+19.98+1.998.
14. 下面有两个小数:
a=0.00…0125 b=0.00…08
1996个0 2000个0
试求a+b, a-b, a b, a b.
———————————————答 案——————————————————————
1. 2
原式=(4.75+8.25)-(9.64+1.36)
=13-11
=2
2. 17
原式=(3.71+5.29)+(4.7+6.3)-(2.74+0.26)
=9+11-3
=17
3. 89
原式=(5.25+5.75+0.125) 8
=(11+0.125) 8
=11 8+0.125 8
=88+1
=89
4. 345
原式=34.5 (8.23+2.77-1)
=34.5 10
=345
5. 62.5
原式=6.25 0.16+2.64 6.25+5.2 6.25+6.25 2
=6.25 (0.16+2.64+5.2+2)
=6.25 10
=62.5
6. 35
7. 1998
8. 199.3
原式=13.5 (10-0.1)+6.5 (10+0.1)
=13.5 10-13.5 0.1+6.5 10+6.5 0.1
=135-1.35+65+0.65
=(135+65)-(1.35-0.65)
=200-0.7
=199.3
9. 1
原式=0.125 0.25 0.5 (8 4 2)
=(0.125 8) (0.25 4) (0.5 2)
=1 1 1
=1
10. 430
原式=11.8 43-43 20 0.09
=11.8 43-43 1.8
=43 (11.8-1.8)
=43 10
=430
11.
原式=32.14+64.28 0.5378 (0.25+0.75-8 0.125)
=32.14+64.28 0.5378 0
=32.14
12.
原式=0.111 (8 125) 73+111 (9 3)
=111 73+111 27
=111 (73+27)
=111 100
=11100
13.
原式=(2000-2)+(200-0.2)+(20-0.02)+(2-0.002)
=2222-2.222
=2222-(10-7.778)
=2222-10+7.778
=2219.778
14. a+b,a的小数点后面有1998位,b的小数点后面有2000位,小数加法要求数位对齐,然后按整数的加法法则计算,所以
a+b=0.00…012508 = 0.00…012508
2000位 1996个0
,方法与a+b一样,数位对齐,还要注意退位和补零,因为
a=0.00…0125,b=0.00…08,由12500-8=12492,所以
1998位 2000位
a-b=0.00…12492=0.00…012492
2000位 1996个0
a b,a b的小数点后面应该有1998+2000位,但125 8=1000,所以
a b=0.00…01000 = 0.00…01
1998+2000位 3995个0
a b,将a、b同时扩大100…0倍,得
2000个0
a b=12500 8=1562.5
几何知识 面积的计算
1、 人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。现在操场面积比原来增加多少平方米?
【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积,操场现在的面积是:(90+10)×(45+5)=5000(平方米),操场原来的面积是:90×45=4050(平方米)。所以现在比原来增加5000-4050=950平方米。
(90+10)×(45+5)-(90×45)=950(平方米)
练习(1)有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米,3分米,面积比原来减少多少平方分米?
练习(2)一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?
2、 一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米?
【思路导航】由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12×9=108(平方米)。 (36÷3)×(54÷9)=108(平方米)
练习(1)一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米?
练习(2)一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形的面积原来是多少平方米?
练习(3)一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。
3、 下图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大。
【思路导航】根据题意,因为一面利用墙,所以两条长加上一条宽等于16米,而宽是4米,那么长是(16-4)÷2=6(米)。因此,占地面积是6×4=24(平方米)
(16-4)÷2×4=24(平方米)
练习(1)下图是某个养禽专业户用一段长13米的篱笆围成一个长方形的养鸡场,求养鸡场的占地面积有多大?
练习(2)用56米长的木栏围成一个长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
4、 一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如下图),面积比原来的正方形减少181平方分米,原正方形的边长是多少?
【思路导航】把阴影的部分剪下来,并把剪下的两个小正方形拼合起来(如下图),再补上长,长和宽分别是8分米、5分米的小长方形,这个拼合成的长方形的面积是:181+8×5=221(平方分米),长是原来正方形的边长,宽是:8+5=13(分米)。所以,原正方形的边长是221÷13=17(分米)
(181+8×5)÷(8+5)=17(分米)
练习(1)一个正方形一条边减少6分米,另一条边减少10分米后变成一个长方形,这个长方形的面积比正方形的面积少260平方分米,求原来的正方形的边长。
练习(2)一个长方形木板,如果长减少5分米,宽减少2分米,那么它的面积减少66平方分米,这时剩下的部分恰好是一个正方形,求原来长方形的面积。
练习(3)一块正方形的玻璃,长和宽都截去8厘米后,剩下的正方形比原来少448平方厘米,这块正方形玻璃原来的面积是多大?
回答者:涵菲儿521 - 初入江湖 二级 6-23 13:07
1 甲数是36,甲,乙的最小公倍数是288,最大公约数是4,求乙数?
2 甲,乙2数的最大公约数是6,最小公倍数是282,求甲乙?
3 把一块长252,宽120厘米的铁片截成边长是整厘米数的面积相等的正方形铁片,毫无剩余,至少要截多少块?
4 大齿轮有96齿,小齿轮有36齿,在A点相咬后,几圈再次在A点相咬?
5 两个大于300的自然数a和b,它们的最大公约数是132,最小公倍数是1890,a+b=?追问那个。。这上面说的差数那些的我们都没学过诶。。。
1、下面是按规律排列的一串数,问其中的第1995项是多少?
解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984
2、在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?
解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上数的和为35×(29+30+31+32+33)=5425
5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。
6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992?
解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。
7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?
解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。
8、有19个算式:
那么第19个等式左、右两边的结果是多少?
解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。
9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对?
解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。
10、如图,有一个边长为1米的下三角形,在每条边上从顶点开始,每隔2厘米取一个点,然后以这些点为端点,作平行线将大正三角形分割成许多边长为2厘米的小正三角形。求⑴边长为2厘米的小正三角形的个数,⑵所作平行线段的总长度。
解答:⑴ 从上数到下,共有100÷2=50行, 第一行1个,第二行3个,第三行5个,……,最后一行99个, 所以共有(1+99)×50÷2=2500个; ⑵所作平行线段有3个方向,而且相同, 水平方向共作了49条, 第一条2厘米,第二条4厘米,第三条6厘米,……, 最后一条98厘米, 所以共长(2+98)×49÷2×3=7350厘米。
11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?
解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。
13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?
解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫敲戳?个应该越多越好,有: 17+16+15+14+13=75棵, 所以最少的小队最少要种82-75=7棵。
14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少?
解答:最大与最小数的和为170-150=20,所以最大数最大为20-1=19, 当最大为19时,有19+18+17+16+15+14+13+12+11+10+9+8+7+1=170, 当最大为18时,有18+17+16+15+14+13+12+11+10+9+8+7+6+2=158, 所以最大数为19时,有第2个数为7。
周期问题
基础练习
1、(1)○△□□○△□□○△□□……第20个图形是(□)。
(2) 第39个棋子是(黑子)。
2、 小雨练习书法,她把“我爱伟大的祖国”这句话依次反复书写,第60个字应写(大)。
3、 二(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。
4、 有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。
5、 有同样大小的红、白、黑三种珠子共100个,按照3红2白1黑的要求不断地排下去。
……
(1)第52个是(白)珠。
(2)前52个珠子共有(17)个白珠。
6、甲问乙:今天是星期五,再过30天是星期(日)。
乙问甲:假如16日是星期一,这个月的31日是星期(二)。
2006年的5月1日是星期一,那么这个月的28日是星期(日)。
※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?(37÷4=9…1 第一个拿牌的人一定抓到“大王”,)
答案
1、(1)□。
(2)黑子。
2、大。
3、男同学。
4、第20个数字是(3),这20个数的和是(58)。
5、
(1)第52个是(白)珠。
(2)前52个珠子共有(17)个白珠。
6、(日)。(二)。(日)。
※ (37÷4=9…1 第一个拿牌的人一定抓到“大王”,)
提高练习
1、(1)○△□□○△□□○△□□……第20个图形是(□)。
(2)○□◎○□◎○□◎○…… 第25个图形是(○)。
2、运动场上有一排彩旗,一共34面,按“三红一绿两黄”排列着,最后一面是(绿旗)。
3、“从小爱数学从小爱数学从小爱数学……”依次排列,第33个字是(爱)。
4、(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。
5、有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。
6、甲问乙:今天是星期五,再过30天是星期(日)。
乙问甲:假如16日是星期一,这个月的31日是星期(二)。
2006年的5月1日是星期一,那么这个月的28日是星期(日)。
※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?
※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)
答案
1、(1)□。
(2)○。
2、绿旗。
3、爱。
4、(1)男同学。
5、第20个数字是(3),这20个数的和是(58)。
6、(日)。(二)。(日)。
※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)
小数的速算与巧算(二)
一、真空题
1. 计算 4.75-9.64+8.25-1.36=_____.
2. 计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.
3. 计算 (5.25+0.125+5.75) 8=_____.
4. 计算 34.5 8.23-34.5+2.77 34.5=_____.
5. 计算 6.25 0.16+264 0.0625+5.2 6.25+0.625 20=_____.
6. 计算 0.035 935+0.035+3 0.035+0.07 61 0.5=_____.
7. 计算 19.98 37-199.8 1.9+1998 0.82=_____.
8. 计算 13.5 9.9+6.5 10.1=_____.
9. 计算 0.125 0.25 0.5 64=_____.
10. 计算 11.8 43-860 0.09=_____.
二、解答题
11.计算 32.14+64.28 0.5378 0.25+0.5378 64.28 0.75-8 64.28 0.125 0.5378.
12. 计算 0.888 125 73+999 3.
13. 计算 1998+199.8+19.98+1.998.
14. 下面有两个小数:
a=0.00…0125 b=0.00…08
1996个0 2000个0
试求a+b, a-b, a b, a b.
———————————————答 案——————————————————————
1. 2
原式=(4.75+8.25)-(9.64+1.36)
=13-11
=2
2. 17
原式=(3.71+5.29)+(4.7+6.3)-(2.74+0.26)
=9+11-3
=17
3. 89
原式=(5.25+5.75+0.125) 8
=(11+0.125) 8
=11 8+0.125 8
=88+1
=89
4. 345
原式=34.5 (8.23+2.77-1)
=34.5 10
=345
5. 62.5
原式=6.25 0.16+2.64 6.25+5.2 6.25+6.25 2
=6.25 (0.16+2.64+5.2+2)
=6.25 10
=62.5
6. 35
7. 1998
8. 199.3
原式=13.5 (10-0.1)+6.5 (10+0.1)
=13.5 10-13.5 0.1+6.5 10+6.5 0.1
=135-1.35+65+0.65
=(135+65)-(1.35-0.65)
=200-0.7
=199.3
9. 1
原式=0.125 0.25 0.5 (8 4 2)
=(0.125 8) (0.25 4) (0.5 2)
=1 1 1
=1
10. 430
原式=11.8 43-43 20 0.09
=11.8 43-43 1.8
=43 (11.8-1.8)
=43 10
=430
11.
原式=32.14+64.28 0.5378 (0.25+0.75-8 0.125)
=32.14+64.28 0.5378 0
=32.14
12.
原式=0.111 (8 125) 73+111 (9 3)
=111 73+111 27
=111 (73+27)
=111 100
=11100
13.
原式=(2000-2)+(200-0.2)+(20-0.02)+(2-0.002)
=2222-2.222
=2222-(10-7.778)
=2222-10+7.778
=2219.778
14. a+b,a的小数点后面有1998位,b的小数点后面有2000位,小数加法要求数位对齐,然后按整数的加法法则计算,所以
a+b=0.00…012508 = 0.00…012508
2000位 1996个0
,方法与a+b一样,数位对齐,还要注意退位和补零,因为
a=0.00…0125,b=0.00…08,由12500-8=12492,所以
1998位 2000位
a-b=0.00…12492=0.00…012492
2000位 1996个0
a b,a b的小数点后面应该有1998+2000位,但125 8=1000,所以
a b=0.00…01000 = 0.00…01
1998+2000位 3995个0
a b,将a、b同时扩大100…0倍,得
2000个0
a b=12500 8=1562.5
几何知识 面积的计算
1、 人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。现在操场面积比原来增加多少平方米?
【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积,操场现在的面积是:(90+10)×(45+5)=5000(平方米),操场原来的面积是:90×45=4050(平方米)。所以现在比原来增加5000-4050=950平方米。
(90+10)×(45+5)-(90×45)=950(平方米)
练习(1)有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米,3分米,面积比原来减少多少平方分米?
练习(2)一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?
2、 一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米?
【思路导航】由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12×9=108(平方米)。 (36÷3)×(54÷9)=108(平方米)
练习(1)一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米?
练习(2)一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形的面积原来是多少平方米?
练习(3)一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。
3、 下图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大。
【思路导航】根据题意,因为一面利用墙,所以两条长加上一条宽等于16米,而宽是4米,那么长是(16-4)÷2=6(米)。因此,占地面积是6×4=24(平方米)
(16-4)÷2×4=24(平方米)
练习(1)下图是某个养禽专业户用一段长13米的篱笆围成一个长方形的养鸡场,求养鸡场的占地面积有多大?
练习(2)用56米长的木栏围成一个长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
4、 一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如下图),面积比原来的正方形减少181平方分米,原正方形的边长是多少?
【思路导航】把阴影的部分剪下来,并把剪下的两个小正方形拼合起来(如下图),再补上长,长和宽分别是8分米、5分米的小长方形,这个拼合成的长方形的面积是:181+8×5=221(平方分米),长是原来正方形的边长,宽是:8+5=13(分米)。所以,原正方形的边长是221÷13=17(分米)
(181+8×5)÷(8+5)=17(分米)
练习(1)一个正方形一条边减少6分米,另一条边减少10分米后变成一个长方形,这个长方形的面积比正方形的面积少260平方分米,求原来的正方形的边长。
练习(2)一个长方形木板,如果长减少5分米,宽减少2分米,那么它的面积减少66平方分米,这时剩下的部分恰好是一个正方形,求原来长方形的面积。
练习(3)一块正方形的玻璃,长和宽都截去8厘米后,剩下的正方形比原来少448平方厘米,这块正方形玻璃原来的面积是多大?
回答者:涵菲儿521 - 初入江湖 二级 6-23 13:07
1 甲数是36,甲,乙的最小公倍数是288,最大公约数是4,求乙数?
2 甲,乙2数的最大公约数是6,最小公倍数是282,求甲乙?
3 把一块长252,宽120厘米的铁片截成边长是整厘米数的面积相等的正方形铁片,毫无剩余,至少要截多少块?
4 大齿轮有96齿,小齿轮有36齿,在A点相咬后,几圈再次在A点相咬?
5 两个大于300的自然数a和b,它们的最大公约数是132,最小公倍数是1890,a+b=?追问那个。。这上面说的差数那些的我们都没学过诶。。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询