什么是定积分的精确定义?

帐号已注销
2019-05-13 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:170万
展开全部

定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。

这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!

扩展资料:

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

定积分的一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

参考资料来源:百度百科-定积分

terminator_888
推荐于2017-12-16 · TA获得超过8792个赞
知道大有可为答主
回答量:1680
采纳率:100%
帮助的人:811万
展开全部
设函数f(x)在区间[a,b]上有定义,J∈R. 如果对任意ε>0,都存在δ>0,使得对[a,b]的任何分割
T:a=x0<x1<x2…<x(n-1)<xn=b
以及任取介点集{ξi | x(i-1)≤ξ≤xi,i=1,2,…,n},只要||T||<δ,就有
|∑(i=1,n) f(ξi)△xi - J| < ε,
那么称f(x)在区间[a,b]上可积,数J称为f(x)在[a,b]上的定积分,记作
J=∫(a,b) f(x) dx
其中,函数f(x)成为被积函数,x称为积分变量,[a,b]称为积分区间,a,b分别称为该定积分的积分下限以及积分上限
这个定义是Riemann首先提出的,因此这种定义下的定积分也称为Riemann积分
这就是定积分的定义
有不懂欢迎追问
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式