已知a,b∈R+,比较a^ab^b与(ab)^a+b/2的大小

xuzhouliuying
高粉答主

2012-08-29 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
a,b均>0,以a、b为真数的对数有意义。
lg(a^ab^b) -lg{(ab)^[(a+b)/2]}
=lg(a^a)+lg(b^b) -[(a+b)/2]lg(ab)
=alga+blgb-[(a+b)/2](lga+lgb)
=[a -(a+b)/2]lga +[b -[(a+b)/2]lgb
=[(a-b)/2]lga +[(b-a)/2]lgb
=[(a-b)/2]lga -[(a-b)/2]lgb
=[(a-b)/2](lga-lgb)
=[(a-b)/2]lg(a/b)
(1)
a>b>0时,(a-b)/2>0 a/b>1 lg(a/b)>0
[(a-b)/2]lg(a/b)>0
lg(a^ab^b) >lg{(ab)^[(a+b)/2]}
a^ab^b>(ab)^[(a+b)/2]
(2)
0<a<b时,
a>b>0时,(a-b)/2<0 a/b<1 lg(a/b)<0
[(a-b)/2]lg(a/b)>0
lg(a^ab^b) >lg{(ab)^[(a+b)/2]}
a^ab^b>(ab)^[(a+b)/2]
(3)
a=b>0时,
a>b>0时,(a-b)/2=0 a/b=1 lg(a/b)=0
[(a-b)/2]lg(a/b)=0
lg(a^ab^b) =lg{(ab)^[(a+b)/2]}
a^ab^b=(ab)^[(a+b)/2]

综上,得a^ab^b≥(ab)^[(a+b)/2],当且仅当a=b时取等号。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式