已知正数x,y,z,满足x^2+4y^2+9z^2=3,求25/(4yz+3xy)+36/(2xy+3xz)+49/(8yz+2xy)的最小值

octstonewk
2012-08-31 · TA获得超过9701个赞
知道大有可为答主
回答量:3786
采纳率:50%
帮助的人:1969万
展开全部
根据柯西不等式(a^2+b^2+c^2)(p^2+q^2+r^2)>=(ap+bq+cr)^2有
[25/(4yz+3xz)+36/(2xy+3xz)+49/(8yz+2xy)]*[(4yz+3xz)+(2xy+3xz)+(8yz+2xy)]
>=(5+6+7)^2
=18^2
因为 (x-2y)^2+(2y-3z)^2+(3z-x)^2=2(x^2+4y^2+9z^2)-4xy-12yz-6zx)>=0
所以 (12yz+6xz+4xy)<=2(x^2+4y^2+9z^2)=2*3=6
而 (4yz+3xz)+(2xy+3xz)+(8yz+2xy)
=12yz+6xz+4xy
故 25/(4yz+3xy)+36/(2xy+3xz)+49/(8yz+2xy)>=18^2/6=54
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式