展开全部
辗转相除法原本是初等数论的内容,不过近年在中学数学里也有出现,是以算法初步的内容出现的,所以有必要简单介绍一下。并且我们在下一篇文章里,将结合菲波拉契数列导出辗转相除法的步数估计——拉梅定理。
辗转相除法又叫欧几里得算法,是欧几里得最先提出来的。不过这个名字有点不好,就如同在数学里说欧拉定理这个词一样,你不知道说的是哪个定理,因为欧拉发现的定理实在是太多……辗转相除法的实现,是基于下面的原理(在这里用(a,b)表示a和b的最大公因数):
(a,b)=(a,ka+b),其中a、b、k都为自然数。………………①
也就是说,两个数的最大公约数,将其中一个数加到另一个数上,得到的新数,其公约数不变,比如(4,6)=(4+6,6)=(4,6+2×4)=2。要证明这个原理很容易:如果p是a和ka+b的公约数,p整除a,也能整除ka+b。那么就必定要整除b,所以p又是a和b的公约数,从而证明他们的最大公约数也是相等的。
基于上面的原理,就能实现我们的迭代相减法:
(78,14)=(64,14)=(50,14)=(36,14)=(22,14)=(8,14)=(8,6)=(2,6)=(2,4)=(2,2)=(0,2)=2
基本上思路就是大数减去小数,一直减到能算出来为止,在作为练习的时候,往往进行到某一步就已经可以看出得值。迭代相减法简单,不过步数比较多,实际上我们可以看到,在上面的过程中,由(78,14)到(8,14)完全可以一步到位,因为(78,14)=(14×5+8,14)=(8,14),由此就诞生出我们的辗转相除法。
用辗转相除法求(a,b).设r0=b,r1=a,反复运用除法算式,得到一系列整数qi,ri和下面的方程:
相当于每一步都运用原理①把数字进行缩小,上面右边就是每一步对应的缩小结果,可以看出,最后的余数rn就是a和b的公约数。我们以一个题为例说明基本过程。
例题:求(326,78)
所以(326,78)=2。这和我们用迭代相减法算出来的结果是一样的。所以中学的同学们应该看到,迭代相减法和辗转相除法在本质上是一样的,相对来说,减法比较简单,但是除法步数少。
我们要看到的是,在辗转相除法中,我们必须算到最后一步才知道rn是不是所求的最大公因数,所以我们把n称作辗转相除法里的步数。在明天,我们将利用辗转相除法的过程来导出此方法的步数估计——拉梅定理。
辗转相除法又叫欧几里得算法,是欧几里得最先提出来的。不过这个名字有点不好,就如同在数学里说欧拉定理这个词一样,你不知道说的是哪个定理,因为欧拉发现的定理实在是太多……辗转相除法的实现,是基于下面的原理(在这里用(a,b)表示a和b的最大公因数):
(a,b)=(a,ka+b),其中a、b、k都为自然数。………………①
也就是说,两个数的最大公约数,将其中一个数加到另一个数上,得到的新数,其公约数不变,比如(4,6)=(4+6,6)=(4,6+2×4)=2。要证明这个原理很容易:如果p是a和ka+b的公约数,p整除a,也能整除ka+b。那么就必定要整除b,所以p又是a和b的公约数,从而证明他们的最大公约数也是相等的。
基于上面的原理,就能实现我们的迭代相减法:
(78,14)=(64,14)=(50,14)=(36,14)=(22,14)=(8,14)=(8,6)=(2,6)=(2,4)=(2,2)=(0,2)=2
基本上思路就是大数减去小数,一直减到能算出来为止,在作为练习的时候,往往进行到某一步就已经可以看出得值。迭代相减法简单,不过步数比较多,实际上我们可以看到,在上面的过程中,由(78,14)到(8,14)完全可以一步到位,因为(78,14)=(14×5+8,14)=(8,14),由此就诞生出我们的辗转相除法。
用辗转相除法求(a,b).设r0=b,r1=a,反复运用除法算式,得到一系列整数qi,ri和下面的方程:
相当于每一步都运用原理①把数字进行缩小,上面右边就是每一步对应的缩小结果,可以看出,最后的余数rn就是a和b的公约数。我们以一个题为例说明基本过程。
例题:求(326,78)
所以(326,78)=2。这和我们用迭代相减法算出来的结果是一样的。所以中学的同学们应该看到,迭代相减法和辗转相除法在本质上是一样的,相对来说,减法比较简单,但是除法步数少。
我们要看到的是,在辗转相除法中,我们必须算到最后一步才知道rn是不是所求的最大公因数,所以我们把n称作辗转相除法里的步数。在明天,我们将利用辗转相除法的过程来导出此方法的步数估计——拉梅定理。
展开全部
928÷174=5............58
174÷58=3
所以:928和174 的最大公约数为58
2468÷1692=1...........776
1692÷776=2...........140
776÷140=5.............76
140÷76=1........64
76÷64=1.......12
64÷12=5........4
12÷4=3
所以:2468和1692最大公约数为4
174÷58=3
所以:928和174 的最大公约数为58
2468÷1692=1...........776
1692÷776=2...........140
776÷140=5.............76
140÷76=1........64
76÷64=1.......12
64÷12=5........4
12÷4=3
所以:2468和1692最大公约数为4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
928÷174余58
174÷58整除
所以最大公因数是58
2468÷1692余776
1692÷776余140
776÷140=76
140÷76余64
76÷64余12
64÷12余4
12÷4整除
所以最大公因数是4
174÷58整除
所以最大公因数是58
2468÷1692余776
1692÷776余140
776÷140=76
140÷76余64
76÷64余12
64÷12余4
12÷4整除
所以最大公因数是4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
928/174=5.......58
174/58=3
故最大公约数为58
2468/1692=1......776
1692/776=2......140
776/140=5......76
140/76=1......64
76/64=1......12
64/12=5......4
12/4=3
故最大公约数为4
174/58=3
故最大公约数为58
2468/1692=1......776
1692/776=2......140
776/140=5......76
140/76=1......64
76/64=1......12
64/12=5......4
12/4=3
故最大公约数为4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询