已知等差数列{an}中,a1=-60,an+1=an+3,求Sn=|a1|+|a2|+…+|an|
1个回答
展开全部
解答:
等差数列的公差为3
an=-60+3(n-1)=3n-63
an>0,则3n-63>0
∴ n>21
(1) n≤21
Sn=|a1|+|a2|+…+|an|
=-(a1+a2+......+an)
=-(-60+3n-63)*n/2
=(-3n²+123n)/2
S21=-(-60+0)*21/2=630
(2)n>21
Sn=|a1|+|a2|+…+|an|
=-(a1+a2+.....+a21)+(a22+a23+....+an)
=-2(a1+a2+......+a21)+(a1+a2+....+an)
=2S21+(-60+3n-63)*n/2
=1260+(3n²-123n)/2
等差数列的公差为3
an=-60+3(n-1)=3n-63
an>0,则3n-63>0
∴ n>21
(1) n≤21
Sn=|a1|+|a2|+…+|an|
=-(a1+a2+......+an)
=-(-60+3n-63)*n/2
=(-3n²+123n)/2
S21=-(-60+0)*21/2=630
(2)n>21
Sn=|a1|+|a2|+…+|an|
=-(a1+a2+.....+a21)+(a22+a23+....+an)
=-2(a1+a2+......+a21)+(a1+a2+....+an)
=2S21+(-60+3n-63)*n/2
=1260+(3n²-123n)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询