∫ tan^4Xdx的不定积分,在线等

帐号已注销
2019-03-12 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:175万
展开全部

∫tan⁴xdx=⅓tan³x-tanx+x+C。(C为积分常数)

解答过程如下:

∫tan⁴xdx

=∫(sec²x-1)²dx

=∫(sec⁴x-2sec²x+1)dx

=∫sec⁴xdx-∫2sec²xdx+∫1dx

=∫sec²xd(tanx)-2tanx+x

=∫(tan²x+1)d(tanx)-2tanx+x

=⅓tan³x+tanx-2tanx+x+C

=⅓tan³x-tanx+x+C

扩展资料:

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

fkdwn
推荐于2018-03-07 · TA获得超过1.3万个赞
知道大有可为答主
回答量:2583
采纳率:0%
帮助的人:1420万
展开全部
∫ (tanx)^4 dx
=∫ (sec²x-1)²dx
=∫ [(secx)^4-2sec²x+1] dx
=∫ (secx)^4 dx-2∫ sec²xdx+∫ dx
=∫ sec²x d(tanx)-2tanx+x
=∫ (tan²x+1)d(tanx)-2tanx+x
=(tan³x)/3-tanx+x+C
C为任意常数
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式