y''-2y'+y=e^-x的通解
2个回答
展开全部
特征方程为:r^2-2r+1=0,r=1为二重根,齐次方程的通解为:y=(C1+C2x)e^x
因为-1不是根,故设特解为y*=Ae^(-x),代入求得:A=1/4
所以:原方程通解为:
y=(C1+C2x)e^x+e^(-x)/4
因为-1不是根,故设特解为y*=Ae^(-x),代入求得:A=1/4
所以:原方程通解为:
y=(C1+C2x)e^x+e^(-x)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
特征方程
r^-2r+1=0
r=1(二重根)
所以齐次通解是y=(C1x+C2)e^x
设特解是y=ae^(-x)
y'=-ae^(-x)
y''=ae^(-x)
代入原方程得
ae^(-x)+2ae^(-x)+ae^(-x)=e^(-x)
a=1/4
所以y=1/4e^(-x)
所以原方程通解是y=(C1x+C2)e^x+1/4e^(-x)
r^-2r+1=0
r=1(二重根)
所以齐次通解是y=(C1x+C2)e^x
设特解是y=ae^(-x)
y'=-ae^(-x)
y''=ae^(-x)
代入原方程得
ae^(-x)+2ae^(-x)+ae^(-x)=e^(-x)
a=1/4
所以y=1/4e^(-x)
所以原方程通解是y=(C1x+C2)e^x+1/4e^(-x)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询