已知函数f(x)=ax^2-(a+2)x+lnx (1)当a>0时,函数f(x)在区间[1,e]上的最小值为-2,求a的范围
(2)若对任意x1、x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a范围...
(2)若对任意x1、x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a范围
展开
2个回答
展开全部
f(x)=ax^2-(a+2)x+lnx (x>0),
f'(x)=2ax-(a+2)+1/x
=[2ax^2-(a+2)x+1]/x,
=2a(x-1/2)(x-1/a)/x,
0<a<2时1/a>1/2;a>2时1/a<1/2.
(1)i)a>1时1/a<1,f'(x)>0(x∈[1,e]),
f(x)|min=f(1)=-2,满足题设。
ii)1/e<=a<=1时1<=1/a<=e,
f(x)|min=f(1/a)=1/a-(a+2)/a-lna=-2,
(a-1)/a=lna,①
设g(x)=xlnx-x+1,1/e<=x<=1,
g'(x)=lnx<=0,
∴g(x)↓,g(1)=0,
∴①有唯一解a=1.
iii)0<a<1/e时f'(x)<0,f(x)|min=f(e)=ae^2-(a+2)e+1=-2,
a(e^2-e)=2e-3,
a=(2e-3)/(e^2-e)>1/e(舍)。
综上,a>=1.
(2)对任意x1、x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,
<==>h(x)=f(x)+2x=a(x^2-x)+lnx(x>0)↑,
<==h'(x)=a(2x-1)+1/x=(2ax^2-ax+1)/x>0,
<==>2ax^2-ax+1>0,②
a=0时②成立;
a<0时②不成立;
a>0时a^2-8a<0,0<a<8,
a=8时h'(x)=(4x-1)^2/x>=0,h(x)↑,满足题设。
综上,0<=a<=8.
f'(x)=2ax-(a+2)+1/x
=[2ax^2-(a+2)x+1]/x,
=2a(x-1/2)(x-1/a)/x,
0<a<2时1/a>1/2;a>2时1/a<1/2.
(1)i)a>1时1/a<1,f'(x)>0(x∈[1,e]),
f(x)|min=f(1)=-2,满足题设。
ii)1/e<=a<=1时1<=1/a<=e,
f(x)|min=f(1/a)=1/a-(a+2)/a-lna=-2,
(a-1)/a=lna,①
设g(x)=xlnx-x+1,1/e<=x<=1,
g'(x)=lnx<=0,
∴g(x)↓,g(1)=0,
∴①有唯一解a=1.
iii)0<a<1/e时f'(x)<0,f(x)|min=f(e)=ae^2-(a+2)e+1=-2,
a(e^2-e)=2e-3,
a=(2e-3)/(e^2-e)>1/e(舍)。
综上,a>=1.
(2)对任意x1、x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,
<==>h(x)=f(x)+2x=a(x^2-x)+lnx(x>0)↑,
<==h'(x)=a(2x-1)+1/x=(2ax^2-ax+1)/x>0,
<==>2ax^2-ax+1>0,②
a=0时②成立;
a<0时②不成立;
a>0时a^2-8a<0,0<a<8,
a=8时h'(x)=(4x-1)^2/x>=0,h(x)↑,满足题设。
综上,0<=a<=8.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询