∫(0,+∞)e^-√xdx=
2个回答
展开全部
∫[0→+∞] e^(-√x) dx
令√x=u,则x=u²,dx=2udu,u:0→+∞
=∫[0→+∞] 2ue^(-u) du
=-2∫[0→+∞] u de^(-u)
=-2ue^(-u) + 2∫[0→+∞] e^(-u) du
=-2ue^(-u) - 2e^(-u) |[0→+∞]
=2
令√x=u,则x=u²,dx=2udu,u:0→+∞
=∫[0→+∞] 2ue^(-u) du
=-2∫[0→+∞] u de^(-u)
=-2ue^(-u) + 2∫[0→+∞] e^(-u) du
=-2ue^(-u) - 2e^(-u) |[0→+∞]
=2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询