怎么解不等式?

kimrave
2012-09-02 · 超过12用户采纳过TA的回答
知道答主
回答量:71
采纳率:0%
帮助的人:42.6万
展开全部
解不等式利用的法则,类似于解方程
利用等式的性质(变形成不等式的性质)
不等式的性质1:两边同时加上或减去相同的数或式子,不等式符号的方向不变
即a>b,则a+c>b+c;a-c>b-c
不等式的性质1:两边同时被一个相同的数或式子减,不等式符号的方向改变
即a>b,则c-a<c-b
不等式的性质3:两边同时乘以或除以一个大于零的数或式子,不等式符号的方向不变
即a>b,且c>0,则ac>bc,a/c>b/c
不等式的性质4:两边同时乘以或除以一个小于零的数或式子,不等式符号的方向改变
即a>b,且c<0,则ac<bc,a/c<b/c
不等式的性质5:不等式两边不等于零,两边同时被一个大于零的数除,不等式符号的方向改变
即ab不等于0,a>b,且c>0,则c/a<c/b
不等式的性质6:不等式两边不等于零,两边同时被一个小于零的数除,不等式符号的方向不变
即ab不等于0,a>b,且c<0,则c/a>c/b

用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等 。 不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。
主要的有:   ①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。   ②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。   ③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。   ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。
编辑本段注意事项
1.符号:   不等式两边都乘以或除以一个负数,要改变不等号的方向。   2.确定解集:   比两个值都大,就比大的还大;   比两个值都小,就比小的还小;   比大的大,比小的小,无解;   比小的大,比大的小,有解在中间。   三个或三个以上不等式组成的不等式组,可以类推。   3.另外,也可以在数轴上确定解集:   把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。   4.不等式两边相加或相减,同一个数或式子,不等号的方向不变。(移项要变号)   5.不等式两边相乘或相除,同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)   6.不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)
编辑本段不等式的证明
1、比较法
包括比差和比商两种方法。
2、综合法
证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,综合法又叫顺推证法或因导果法。
3、分析法
证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法
证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法
用数学归纳法证明不等式,要注意两步一结论。   在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法
证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法
中环杯数学竞赛
2012-09-01 · TA获得超过3886个赞
知道小有建树答主
回答量:511
采纳率:100%
帮助的人:302万
展开全部
主要的有:
  ①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
  ②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。
  ③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。
  ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。

1.符号:
  不等式两边都乘以或除以一个负数,要改变不等号的方向。
  2.确定解集:
  比两个值都大,就比大的还大;
  比两个值都小,就比小的还小;
  比大的大,比小的小,无解;
  比小的大,比大的小,有解在中间。
  三个或三个以上不等式组成的不等式组,可以类推。
  3.另外,也可以在数轴上确定解集:
  把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。
  4.不等式两边相加或相减,同一个数或式子,不等号的方向不变。(移项要变号)
  5.不等式两边相乘或相除,同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)
  6.不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小小丶白痴
2012-09-01
知道答主
回答量:13
采纳率:0%
帮助的人:2.1万
展开全部
不等式。。具体点啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式