1个回答
展开全部
由题意可得
an=2Sn^2/(2Sn-1)
又由于 an=Sn-S(n-1)
即Sn-S(n-1)=2Sn^2/(2Sn-1)
化简 得
Sn+2SnS(n-1)-S(n-1)=0
两边同除SnS(n-1) 得
1/Sn-1/S(n-1)=2
1/S1=1 1/S2=3
可知数列{1/Sn}是以1为首项 公差为2的等差数列
则1/Sn=1+(n-1)*2=2n-1
Sn=1/(2n-1)
代入可得
an=2/(2n-1)(3-2n)
所以an= 1 (n=1)
an=2/(2n-1)(3-2n) (n>=2)
an=2Sn^2/(2Sn-1)
又由于 an=Sn-S(n-1)
即Sn-S(n-1)=2Sn^2/(2Sn-1)
化简 得
Sn+2SnS(n-1)-S(n-1)=0
两边同除SnS(n-1) 得
1/Sn-1/S(n-1)=2
1/S1=1 1/S2=3
可知数列{1/Sn}是以1为首项 公差为2的等差数列
则1/Sn=1+(n-1)*2=2n-1
Sn=1/(2n-1)
代入可得
an=2/(2n-1)(3-2n)
所以an= 1 (n=1)
an=2/(2n-1)(3-2n) (n>=2)
追问
an=2/(2n-1)(3-2n)
这一步怎么来的
追答
将Sn 代入 到an=2Sn^2/(2Sn-1)
就可以得到 呵呵
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询