1个回答
展开全部
原式=[1+3/(a-2)]÷[(a+1)/(a²-2)]
={ [(a-2)+3]/(a-2) }×[(a²-2)/(a+1)]
=[(a+1)/(a-2)]×[(a²-2)/(a+1)]
=(a²-2)/(a-2)
当a=√2-3时
原式=[(√2-3)²-2]/(√2-3-2)
=(2-6√2+9-2)/(√2-5)
=(9-6√2)(√2+5)/[(√2+5)(√2-5)]
=(9√2+45-12-30√2)/(√2²-5²)
=(33-21√2)/(2-25)
=(33-21√2)/(-23)
=(21√2-33)/23
={ [(a-2)+3]/(a-2) }×[(a²-2)/(a+1)]
=[(a+1)/(a-2)]×[(a²-2)/(a+1)]
=(a²-2)/(a-2)
当a=√2-3时
原式=[(√2-3)²-2]/(√2-3-2)
=(2-6√2+9-2)/(√2-5)
=(9-6√2)(√2+5)/[(√2+5)(√2-5)]
=(9√2+45-12-30√2)/(√2²-5²)
=(33-21√2)/(2-25)
=(33-21√2)/(-23)
=(21√2-33)/23
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询