分数产生和发展历史
展开全部
分数的产生
人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数.
用一个作标准的量(度量单位)去度量另一个量,只有当量若干次正好量尽的时候,才可以用一个整数来表示度量的结果.如果量若干次不能正好量尽,有两种情况:
例如,用b作标准去量a:
一种情况是把b分成n等份,用其中的一份作为新的度量单位去度量a,量m次正好量尽,就表示a含有把b分成n等份以后的m个等份.例如,把b分成4等份,用其中的一份去量a,量9次正好量尽.在这种情况下,不能用一个整数表示用b去度量a的结果,就必须引进一种新的数--分数来表示度量的结果.
另一种情况是无论把b分成几等份,用其中的一份作为新的度量a,都不能恰好量尽(如用圆的直径去量同一圆的周长).在这种情况下,就需要引进一种新的数-无理数.在整数除法中,两个数相除,有时不能得到整数商.为了使除法运算总可以施行,也需要引进新的一种数-分数.
综上所述,分数是在实际度量和均分中产生的
人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数.
用一个作标准的量(度量单位)去度量另一个量,只有当量若干次正好量尽的时候,才可以用一个整数来表示度量的结果.如果量若干次不能正好量尽,有两种情况:
例如,用b作标准去量a:
一种情况是把b分成n等份,用其中的一份作为新的度量单位去度量a,量m次正好量尽,就表示a含有把b分成n等份以后的m个等份.例如,把b分成4等份,用其中的一份去量a,量9次正好量尽.在这种情况下,不能用一个整数表示用b去度量a的结果,就必须引进一种新的数--分数来表示度量的结果.
另一种情况是无论把b分成几等份,用其中的一份作为新的度量a,都不能恰好量尽(如用圆的直径去量同一圆的周长).在这种情况下,就需要引进一种新的数-无理数.在整数除法中,两个数相除,有时不能得到整数商.为了使除法运算总可以施行,也需要引进新的一种数-分数.
综上所述,分数是在实际度量和均分中产生的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询