微分方程 化简 求方法 如图
1个回答
展开全部
这是一阶线性方程,未知函数是x
由于x'+2yx/(1+y^2)=y^4/(1+y^2)
用通解公式:
x=e^(-∫2y/(1+y^2)*dy)(C+∫y^4/(1+y^2)*e^(-∫2y/(1+y^2)*dy)dy)
注意:e^(-∫2y/(1+y^2)*dy)=e^(-ln(1+y^2))=1/(1+y^2),e^(∫2y/(1+y^2)*dy)=1+y^2
所以:
x=e^(-∫2y/(1+y^2)*dy)(C+∫y^4/(1+y^2)*e^(-∫2y/(1+y^2)*dy)dy)
=1/(1+y^2)*(C+∫y^4dy)=1/(1+y^2)*(C+y^5/5)
=(5C+y^5)/5(1+y^2)
由于x'+2yx/(1+y^2)=y^4/(1+y^2)
用通解公式:
x=e^(-∫2y/(1+y^2)*dy)(C+∫y^4/(1+y^2)*e^(-∫2y/(1+y^2)*dy)dy)
注意:e^(-∫2y/(1+y^2)*dy)=e^(-ln(1+y^2))=1/(1+y^2),e^(∫2y/(1+y^2)*dy)=1+y^2
所以:
x=e^(-∫2y/(1+y^2)*dy)(C+∫y^4/(1+y^2)*e^(-∫2y/(1+y^2)*dy)dy)
=1/(1+y^2)*(C+∫y^4dy)=1/(1+y^2)*(C+y^5/5)
=(5C+y^5)/5(1+y^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询