2012新课标全国高考理科数学卷第12题答案解析 30
展开全部
两条曲线互为反函数 也就是说关于y=x对称,做两条曲线的切线且平行于y=x,两切线的距离即最小值 可设P(a, (e^a)/2,) Q(b, ln(2b))
易知:
曲线y=(e^x)/2在点P处的法线方程为:y=[-2/(e^a)]x+[2a/(e^a)]+[(e^a)/2]
曲线y=ln(2x)在点Q处的法线方程为:y=-cx+c²+ln(2c).
由上面结论,对比可得:
c=2/(e^a)
c²+ln(2c)=[2a/(e^a)]+[(e^a)/2]
解得: c=1, a=ln2
∴P(ln2, 1), Q(1,ln2)
∴|PQ|min=√[(1-ln2)²+(1-ln2)²]=(1-ln2)√2
易知:
曲线y=(e^x)/2在点P处的法线方程为:y=[-2/(e^a)]x+[2a/(e^a)]+[(e^a)/2]
曲线y=ln(2x)在点Q处的法线方程为:y=-cx+c²+ln(2c).
由上面结论,对比可得:
c=2/(e^a)
c²+ln(2c)=[2a/(e^a)]+[(e^a)/2]
解得: c=1, a=ln2
∴P(ln2, 1), Q(1,ln2)
∴|PQ|min=√[(1-ln2)²+(1-ln2)²]=(1-ln2)√2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
导数最值问题麽…回头用电脑给你打哈!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |