若x,y为正实数,且x+y=4,求根号下x的平方+1与根号下y的平方+4的和的最小值. 用初中数学方法解答,要详细过程... 用初中数学方法解答,要详细过程 展开 我来答 可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。 实数 x+y 求根 平方 根号 搜索资料 2个回答 #热议# 不吃早饭真的会得胆结石吗? crs0723 2012-09-05 · TA获得超过2.5万个赞 知道大有可为答主 回答量:1.6万 采纳率:85% 帮助的人:4509万 我也去答题访问个人页 关注 展开全部 √(x^2+1)+√(y^2+4)=√(x^2+1)+√[(x-4)^2+4]=√[(x-0)^2+(0-1)^2]+√[(x-4)^2+(0-2)^2]设A(0,1) B(4,2) A‘(0,-1) M(x,0) (0<x<4)则原式=|AM|+|BM|=|A'M|+|BM|>=|A'B|=√[(0-4)^2+(-1-2)^2]=5当且仅当A'、M和B三点共线时等号成立 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 桓夏析天真 2019-03-21 · TA获得超过3729个赞 知道大有可为答主 回答量:3080 采纳率:32% 帮助的人:228万 我也去答题访问个人页 关注 展开全部 ①数形结合法√(x^2+1)+√(y^2+4)=√(x^2+1)+√[(x-4)^2+4]相当于(x,0)到(0,1)和(4,2)两点的距离和其最小值相当于(0,-1)到(4,2)的距离=5②利用三角不等式√(x^2+1)+√(y^2+4)=√(x^2+1)+√[(x-4)^2+4]>=√[(x-x+4)^2+(-1-2)^2]=5 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-11-12 已知x、y为实数,y=根号下√x平方-4+√4x平方 +1除以x-2,试求3x+4y的值.? 2011-05-02 xy为正实数,且x+y=4,求根号x*2+1+根号y*2+4的最小值 ,*是次方 12 2011-05-02 xy为正实数,且x+y=4,求根号x*2+1+根号y*2+4的最小值 12 2010-11-08 已知x、y为实数,y=根号下√x平方-4+√4x平方 +1除以x-2,试求3x+4y的值。 78 2011-04-07 若x,y为正实数,且x+y=4,则根号(x^2+1)+根号(y^2+4)的最小值是多少?详细过程及答案 44 2012-11-26 若x,y为正实数,且x+y=4,求根号下x的平方+1与根号下y的平方+4的和的最小值.用不同方法 43 2014-07-29 设x、y为正实数,且X+Y=4 。 求根号下X的平方加1加上根号下Y平方加4的最小值 3 2011-09-03 已知实数x,y,满足y的平方+4y+4+根号下(x-y-1)=0,求xy的值 9 更多类似问题 > 为你推荐: