3个回答
展开全部
解:∵x+y=4. ∴y=4-x.
∴式子z=√(x²+1)+ √(y²+4)可化为:
Z=√[(x-0) ²+(0+1) ²]+√[(x-4) ²+(0-2) ²]. (0<x<4)
易知,这个式子的几何意义是:
X正半轴上的一个动点P(x,0)到两个定点M(0,-1),N(4,2)距离的和,即
Z=|PM|+|PN|.
由“两点之间,直线段最短”可知,
连接两定点M,N。与x正半轴于点P(4/3,0),此时Zmin=|MN|=5
∴式子z=√(x²+1)+ √(y²+4)可化为:
Z=√[(x-0) ²+(0+1) ²]+√[(x-4) ²+(0-2) ²]. (0<x<4)
易知,这个式子的几何意义是:
X正半轴上的一个动点P(x,0)到两个定点M(0,-1),N(4,2)距离的和,即
Z=|PM|+|PN|.
由“两点之间,直线段最短”可知,
连接两定点M,N。与x正半轴于点P(4/3,0),此时Zmin=|MN|=5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:5
√((x^2)+1)+√((y^2)+4)的最小值=5
√((x^2)+1)+√((y^2)+4)的最小值=5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1+2被根号5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询