如图,在RT△ABC中,AB=AC,∠BAC=90°,过点A的任一直线AN,BD⊥AN于D,CE⊥AN于E
展开全部
(1)∵BD⊥AN,CE⊥AN,∠BAC=90°
∴∠D=∠E=∠BAC=90°
∵∠DAB+∠BAC+∠NAC=∠NAC+∠AEC+∠EAC=180
∴∠DAB+∠NAC=∠NAC+∠EAC=90
∴∠DAB=∠EAC
在三角形ADB和三角形AEC中,
∵∠D=∠E
AB=AC
∠DAB=∠EAC
∴三角形ADB全等于三角形AEC
∴DB=AE,DA=CA
∴DA+AE=BD+CE
即DE=BD+CE
(2)DE=BD-CE
∴∠D=∠E=∠BAC=90°
∵∠DAB+∠BAC+∠NAC=∠NAC+∠AEC+∠EAC=180
∴∠DAB+∠NAC=∠NAC+∠EAC=90
∴∠DAB=∠EAC
在三角形ADB和三角形AEC中,
∵∠D=∠E
AB=AC
∠DAB=∠EAC
∴三角形ADB全等于三角形AEC
∴DB=AE,DA=CA
∴DA+AE=BD+CE
即DE=BD+CE
(2)DE=BD-CE
追问
谢谢昂,第二问,有什么公式来证明吗?
追答
没,不用写啊
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询