1个回答
展开全部
1^3+2^3+3^3+······+n^3=(1/4)(n^2+n)^2。 证明如下:
∵(n+1)^4=n^4+4n^3+6n^2+4n+1,
∴(n+1)^4-n^4=4n^3+6n^2+4n+1。
依次令上式中的n=1、2、3、······、n,依次得:
2^4-1^4=4×1^3+6×1^2+4×1+1,
3^4-2^4=4×2^3+6×2^2+4×2+1,
4^2-3^4=4×3^3+6×3^2+4×3+1,
······
(n+1)^4-n^4=4n^3+6n^2+4n+1。
将上述n个式子相加,得:
(n+1)^4-1^4
=4×(1^3+2^3+3^3+······+n^3)+6×(1^2+2^2+3^2+······+n^2)
+4×(1+2+3+······+n)+n,
∴4×(1^3+2^3+3^3+······+n^3)
=(n+1)^4-1^4-6×(1^2+2^2+3^2+······+n^2)-4×(1+2+3+······+n)-n
=(n+1)^4-(n+1)-6[(1/6)n(n+1)(2n+1)]-4[(1/2)n(n+1)]
=(n+1)[(n+1)^3-1-n(2n+1)-2n]
=(n+1)[(n+1)^3-1-n-2n^2-2n]
=(n+1)[(n+1)^3-(n+1)-2n(n+1)]
=(n+1)^2[(n+1)^2-1-2n]
=(n+1)^2(n^2+2n+1-1-2n)
=(n^2+n)^2,
∴1^3+2^3+3^3+······+n^3=(1/4)(n^2+n)^2。
∵(n+1)^4=n^4+4n^3+6n^2+4n+1,
∴(n+1)^4-n^4=4n^3+6n^2+4n+1。
依次令上式中的n=1、2、3、······、n,依次得:
2^4-1^4=4×1^3+6×1^2+4×1+1,
3^4-2^4=4×2^3+6×2^2+4×2+1,
4^2-3^4=4×3^3+6×3^2+4×3+1,
······
(n+1)^4-n^4=4n^3+6n^2+4n+1。
将上述n个式子相加,得:
(n+1)^4-1^4
=4×(1^3+2^3+3^3+······+n^3)+6×(1^2+2^2+3^2+······+n^2)
+4×(1+2+3+······+n)+n,
∴4×(1^3+2^3+3^3+······+n^3)
=(n+1)^4-1^4-6×(1^2+2^2+3^2+······+n^2)-4×(1+2+3+······+n)-n
=(n+1)^4-(n+1)-6[(1/6)n(n+1)(2n+1)]-4[(1/2)n(n+1)]
=(n+1)[(n+1)^3-1-n(2n+1)-2n]
=(n+1)[(n+1)^3-1-n-2n^2-2n]
=(n+1)[(n+1)^3-(n+1)-2n(n+1)]
=(n+1)^2[(n+1)^2-1-2n]
=(n+1)^2(n^2+2n+1-1-2n)
=(n^2+n)^2,
∴1^3+2^3+3^3+······+n^3=(1/4)(n^2+n)^2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询