
在三角形ABC中,a.b.c分别是三个内角A,B,C的对边.且满足cosB/cosC=-b/2a+c
3个回答
展开全部
cosB/cosC=-b/2a+c=-sinB/(2sinA+sinC)
2sinAcosB+sinCcosB+sinBcosC=0
2sinAcosB+sin(C+B)=0
sinA(2cosB+1)=0
cosB= - 1/2 ==>B=120度
由余弦定理得:
13=a^2+c^2-2accos120=(a+c)^2-ac=16-ac
ac=3
a+c=4
{a=1
{c=3
....................
{a=3
{c=1
2sinAcosB+sinCcosB+sinBcosC=0
2sinAcosB+sin(C+B)=0
sinA(2cosB+1)=0
cosB= - 1/2 ==>B=120度
由余弦定理得:
13=a^2+c^2-2accos120=(a+c)^2-ac=16-ac
ac=3
a+c=4
{a=1
{c=3
....................
{a=3
{c=1
展开全部
cosB/cosC=-sinB/(2sinA+sinC)化简整理得:
sinB×cosC=-cosB×(2sinA+sinC)
sinB ×cosC+cosB× sinC=-2cosB×sinA
sin(B+C)=-2cosB×sinA
sinA=-2cosB×sinA
cosB=-1/2
B=120°
2、根据余弦定理b^2=a^2+c^2-2ac×cosB=(a+c)^2-2ac-2ac×cosB
代入已知条件得:13=16-2ac(1+cosB)=16-ac, ac=3
a=3或a=1
sinB×cosC=-cosB×(2sinA+sinC)
sinB ×cosC+cosB× sinC=-2cosB×sinA
sin(B+C)=-2cosB×sinA
sinA=-2cosB×sinA
cosB=-1/2
B=120°
2、根据余弦定理b^2=a^2+c^2-2ac×cosB=(a+c)^2-2ac-2ac×cosB
代入已知条件得:13=16-2ac(1+cosB)=16-ac, ac=3
a=3或a=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询