设函数f(x,y)={xy(x^2-y^2)/(x^2+y^2) ,当(x,y) ≠(0,0);0,当(x,y)=(0,0).求f”yx(0,0),f”xy(0,0).

这是一道选择题,求f”yx(0,0),≠f”xy(0,0)的选项,答案如下图。请问第四行和第七行的作用?去掉可以吗... 这是一道选择题,求f”yx(0,0), ≠f”xy(0,0)的选项,答案如下图。请问第四行和第七行的作用?去掉可以吗 展开
 我来答
高启强聊情感
高粉答主

2020-06-14 · 关注我不会让你失望
知道大有可为答主
回答量:5789
采纳率:100%
帮助的人:150万
展开全部

先求函数的全导数为:

df(x,y)={[xy(x^2-y^2)]'(x^2+y^2)-xy(x^2-y^2)(x^2+y^2)'}/(x^2+y^2)^2

={[(xy)'(x^2-y^2)+(xy)(x^2-y^2)'](x^2+y^2)-xy(x^2-y^2)(2xdx+2ydy)}/(x^2+y^2)^2

={[(ydx+xdy)(x^2-y^2)+xy(2xdx-2ydy)](x^2+y^2)-2xy(x^2-y^2)(xdx+ydy)}/(x^2+y^2)^2

=【y(x^4-4x^2y^2-y^4)/(x^2+y^2)^2】dx-【x(x^4-5y^4)/(x^2+y^2)^2】dy

扩展资料:

已知二元函数z=f(u,v),其中u、v是关于x的一元函数,有u=u(x)、v=v(x),u、v作为中间变量构成自变量x的复合函数z,它最终是一个一元函数,它的导数就称为全导数。全导数的出现可以作为一类导数概念的补充,其中渗透着整合全部变量的思想。

对全导数的计算主要包括一一型锁链法则、二一型锁链法则、三一型锁链法则,其中二一型锁链法则最为重要,并且可以将二一型锁链法则推广到更加一般的情况n一型锁链法则。

设z是u、v的二元函数z=f(u,v),u、v是x的一元函数u=u(x)、v=v(x),z通过中间变量u、v构成自变量x的复合函数。这种两个中间变量、一个自变量的多元复合函数是一元函数,其导数称为全导数。

茹翊神谕者

2021-08-21 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1595万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式