三角函数求导公式

百度网友1d9f0cf
2019-07-07 · TA获得超过1.5万个赞
知道答主
回答量:67
采纳率:0%
帮助的人:2.8万
展开全部

(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx

(cscx)'=-cotx·cscx

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)

(sinhx)'=coshx

(coshx)'=sinhx

(tanhx)'=1/(coshx)^2=(sechx)^2

(coth)'=-1/(sinhx)^2=-(cschx)^2

(sechx)'=-tanhx·sechx

(cschx)'=-cothx·cschx

扩展资料:

变化规律

正弦值在

 

随角度增大(减小)而增大(减小),在

 

随角度增大(减小)而减小(增大);

余弦值在

 

随角度增大(减小)而增大(减小),在

 

随角度增大(减小)而减小(增大);

正切值在

 

随角度增大(减小)而增大(减小);

余切值在

 

随角度增大(减小)而减小(增大);

正割值在

 

随着角度的增大(或减小)而增大(或减小);

余割值在

 

随着角度的增大(或减小)而减小(或增大)。

参考资料来源:百度百科—三角函数

文学小百灵
高能答主

2021-06-09 · 孔子曰:学而时习之,不亦说乎?
文学小百灵
采纳数:907 获赞数:67591

向TA提问 私信TA
展开全部

(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx

(cscx)'=-cotx·cscx

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)

(sinhx)'=coshx

(coshx)'=sinhx

(tanhx)'=1/(coshx)^2=(sechx)^2

(coth)'=-1/(sinhx)^2=-(cschx)^2

(sechx)'=-tanhx·sechx

(cschx)'=-cothx·cschx

三角函数求导公式证明过程

以(cosx)' = - sinx为例,推导过程如下:

设f(x)=sinx;

(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=sindxcosx/dx根据重要极限sinx/x在x趋近于0时等于一。

(f(x+dx)-f(x))/dx=cosx,即sinx的导函数为cosx。

同理可得,设f(x)=cos(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-sinxsindx-sinx)/dx。

因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=-sindxsinx/dx,根据重要极限sinx/x在x趋近于0时等于一(f(x+dx)-f(x))/dx=-sinx即cosx的导函数为-sinx。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
chinasunsunsun
推荐于2018-03-07 · TA获得超过1.6万个赞
知道大有可为答主
回答量:5494
采纳率:75%
帮助的人:3562万
展开全部
③ (sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)

参考资料: http://baike.baidu.com/view/30958.htm

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式