初二数学,已知,如图在△ABC中,点D、E在边BC上,∠CAE=∠B,E是CD的中点,且AD平分∠BAE. 求证:BD=AC

不要上网复制答案,在线等待,谢谢,答题好可加悬赏... 不要上网复制答案,在线等待,谢谢,答题好可加悬赏 展开
CMY891
2012-09-09 · TA获得超过4.1万个赞
知道大有可为答主
回答量:6416
采纳率:0%
帮助的人:7952万
展开全部
做辅助线,延长AE至F,使得AE=EF(即E是AF的中点)。连接CF、DF、BF。
证明:∵E是CD的中点也是AF的中点,
∴ADFC是平行四边形,
∴∠AFD=∠CAE,AC=DF.
又∵∠CAE=∠B,
∴∠AFD=∠B。
又∵AD平分∠BAE,
∴∠BAD=∠FAD.
又∵∠AFD=∠B,∠BAD=∠FAD,AD=AD,
∴△ABD≌△AFD,
∴AB=AF,
∴ABF=∠AFB。
又∵AFD=∠B,
∴∠DBF=∠DFB,
∴BD=DF
又∵AC=DF,
∴BD=AC。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式