四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,E是AB的中点,且PA=AB。求证:平面PCE⊥平面PCD

求证:平面PCE⊥平面PCD... 求证:平面PCE⊥平面PCD 展开
妙酒
2012-09-13 · TA获得超过186万个赞
知道顶级答主
回答量:42万
采纳率:93%
帮助的人:21亿
展开全部
因为 PA垂直AD(PA垂直ABCD),∠PDA=45°
所以 PA=AD,即AF垂直PD
所以 AF垂直PCD

取PC中点,设为G,连接FG、EG
因为 FG为△PCD的中位线
所以 FG=½CD且FG∥CD
又因为 AE=½AB且AE∥CD
所以 AE∥FG且AE=FG
所以 AFGE为平行四边形
所以 AF∥EG
因为 AF垂直PCD
所以 EG垂直PCD
所以 PCE垂直PCD
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式