求证:在△ABC中,1<sinA/(sinB+sinC)+sinB/(sinC+sinA)+sinC/(sinA+sinB)<2
1个回答
展开全部
简单
sinA/(sinB+sinC)+sinB/(sinC+sinA)+sinC/(sinA+sinB)
>sinA/(sinA+sinB+sinC)+sinB/(sinB+sinC+sinA)+sinC/(sinC+sinA+sinB)=1
下面证
sinA<(sinB+sinC) sin(B+C)=sinBcosC+sinCcosB<(sinB+sinC)
即sinB(cosC-1)+sinC(cosB-1)<0 所以sinA/(sinB+sinC)<1
下面用一个结论a>0 b>0 a>b 如果t>0 那么(a/b)<(a+t)/(b+t)展开既有
所以sinA/(sinB+sinC)+sinB/(sinC+sinA)+sinC/(sinA+sinB)
<(sinA+sinA)/(sinA+sinB+sinC)+(sinB+sinB)/(sinB+sinC+sinA)+(sinC+sinC)/(sinC+sinA+sinB)=2得证
sinA/(sinB+sinC)+sinB/(sinC+sinA)+sinC/(sinA+sinB)
>sinA/(sinA+sinB+sinC)+sinB/(sinB+sinC+sinA)+sinC/(sinC+sinA+sinB)=1
下面证
sinA<(sinB+sinC) sin(B+C)=sinBcosC+sinCcosB<(sinB+sinC)
即sinB(cosC-1)+sinC(cosB-1)<0 所以sinA/(sinB+sinC)<1
下面用一个结论a>0 b>0 a>b 如果t>0 那么(a/b)<(a+t)/(b+t)展开既有
所以sinA/(sinB+sinC)+sinB/(sinC+sinA)+sinC/(sinA+sinB)
<(sinA+sinA)/(sinA+sinB+sinC)+(sinB+sinB)/(sinB+sinC+sinA)+(sinC+sinC)/(sinC+sinA+sinB)=2得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询