已知集合A={(x,y)│x的平方+mx-y+2=0} ,B={(x,y)│x-y+1=0 ,0≤x≤2},

如果A∩B≠空集,求实数m的取值范围哪位神人帮忙啊!!!!!!!!!!!!!1... 如果A∩B≠空集,求实数m的取值范围 哪位神人帮忙啊!!!!!!!!!!!!!1 展开
风钟情雨钟情
2012-09-13 · TA获得超过1.2万个赞
知道大有可为答主
回答量:1385
采纳率:100%
帮助的人:629万
展开全部
分析,
A={(x,y)x²+mx-y+2=0}
B={(x,y)|x-y+1=0,0≦x≦2}
∵A∩B≠空集,
即是,方程x-y+1=0,与x²+mx-y+2=0在[0,2]上恒有解。
联立方程得,
x²+(m-1)x+1=0
设f(x)=x²+(m-1)x+1
根据函数图象的性质,
f(0)=1>0
首先,△≥0,且对称轴x=(1-m)/2>0
求出,m≦-1
因此,
(1-m)/2≧1
当(1-m)/2≦2时,f(x)与x轴在[0,2]上,恒有交点。
∴-3≦m≦-1
当(1-m)/2>2时,
f(2)恒小于0,
因此,f(x)与x轴在[0,2]上,恒有交点。
∴m<-3
综上可得,m≦-1。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式